Fabrication of Defect-Free P84® Polyimide Hollow Fiber for Gas Separation: Pathway to Formation of Optimized Structure

The elimination of the additional defect healing post-treatment step in asymmetric hollow fiber manufacturing would result in a significant reduction in membrane production cost. However, obtaining integrally skinned polymeric asymmetric hollow fiber membranes with an ultrathin and defect-free selective layer is quite challenging. In this study, P84® asymmetric hollow fiber membranes with a highly thin (~56 nm) defect-free skin were successfully fabricated by fine tuning the dope composition and spinning parameters using volatile additive (tetrahydrofuran, THF) as key parameters. An extensive experimental and theoretical study of the influence of volatile THF addition on the solubility parameter of the N-methylpyrrolidone/THF solvent mixture was performed. Although THF itself is not a solvent for P84®, in a mixture with a good solvent for the polymer, like N-Methyl-2-pyrrolidone (NMP), it can be dissolved at high THF concentrations (NMP/THF ratio > 0.52). The as-spun fibers had a reproducible ideal CO2/N2 selectivity of 40, and a CO2 permeance of 23 GPU at 35 °C. The fiber production can be scaled-up with retention of the selectivity.

[1]  Kai Yu Wang,et al.  Macrovoid evolution and critical factors to form macrovoid-free hollow fiber membranes , 2008, Hollow Fiber Membranes.

[2]  F. Kapteijn,et al.  PBI mixed matrix hollow fiber membrane: Influence of ZIF-8 filler over H2/CO2 separation performance at high temperature and pressure , 2020 .

[3]  Hui Li,et al.  The enhancement of mechanical properties of P84 hollow fiber membranes by thermally annealing below and above Tg , 2020 .

[4]  Runlin Han,et al.  Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity , 2019, Chinese Journal of Chemical Engineering.

[5]  C. Stafford,et al.  Thermally Stable Cross-linked P84 with Superior Membrane H2/CO2 Separation Properties at 100 °C. , 2019, Journal of membrane science.

[6]  X. Jian,et al.  Preparation of poly(2,4,6‐triaminopyrimidine‐TMC)/P84 composite nanofiltration membrane with enhanced chlorine resistance and solvent resistance , 2019, Journal of Chemical Technology & Biotechnology.

[7]  A. Toikka,et al.  Impact of Endometallofullerene on P84 Copolyimide Transport and Thermomechanical Properties , 2018, Polymers.

[8]  Yujie Ban,et al.  Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation , 2018, Journal of Membrane Science.

[9]  Mohammad Hossein Davood Abadi Farahani,et al.  Solvent resistant hollow fiber membranes comprising P84 polyimide and amine-functionalized carbon nanotubes with potential applications in pharmaceutical, food, and petrochemical industries , 2018, Chemical Engineering Journal.

[10]  W. Koros,et al.  Crosslinkable TEGMC asymmetric hollow fiber membranes for aggressive sour gas separations , 2018 .

[11]  Matthias Wessling,et al.  Tubular macro-porous titanium membranes , 2014 .

[12]  Chen Zhang,et al.  Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations , 2014 .

[13]  E. Favvas,et al.  Effect of air gap on gas permeance/selectivity performance of BTDA‐TDI/MDI copolyimide hollow fiber membranes , 2013 .

[14]  Ryan P. Lively,et al.  A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas , 2012 .

[15]  Inmaculada Ortiz,et al.  Hydrogen separation from multicomponent gas mixtures containing CO, N2 and CO2 using Matrimid asymmetric hollow fiber membranes , 2012 .

[16]  Juin-Yih Lai,et al.  Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future , 2012 .

[17]  Tai‐Shung Chung,et al.  Dual-layer PBI/P84 hollow fibers for pervaporation dehydration of acetone , 2012 .

[18]  A. Ismail,et al.  Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers , 2012 .

[19]  D. Stamatialis,et al.  ''Chemistry in a spinneret'' to fabricate hollow fibers for organic solvent filtration , 2012 .

[20]  A. Livingston,et al.  The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN): Part A. Effect of polymer/solvent/non-solvent system choice , 2011 .

[21]  E. Drioli,et al.  In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membranes for H2/CO2 separation , 2010 .

[22]  Van Krevelen Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions , 2009 .

[23]  J. Economy,et al.  Chemical modification of P84 copolyimide membranes by polyethylenimine for nanofiltration , 2009 .

[24]  Tai‐Shung Chung,et al.  The rheology of Torlon® solutions and its role in the formation of ultra-thin defect-free Torlon® hollow fiber membranes for gas separation , 2009 .

[25]  Yoji Kase Gas Separation by Polyimide Membranes , 2008 .

[26]  Tai‐Shung Chung,et al.  The fabrication of hollow fiber membranes with double-layer mixed-matrix materials for gas separation , 2008 .

[27]  A. Livingston,et al.  Controlling molecular weight cut-off curves for highly solvent stable organic solvent nanofiltration (OSN) membranes , 2008 .

[28]  William J. Koros,et al.  Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide–imide polymer, for high-pressure CO2 separations , 2008 .

[29]  N. Peng,et al.  The effects of spinneret dimension and hollow fiber dimension on gas separation performance of ultra-thin defect-free Torlon® hollow fiber membranes , 2008 .

[30]  Pieter Vandezande,et al.  Solvent resistant nanofiltration: separating on a molecular level. , 2008, Chemical Society reviews.

[31]  Matthias Wessling,et al.  Materials dependence of mixed gas plasticization behavior in asymmetric membranes , 2007 .

[32]  A. Livingston,et al.  Polymeric membranes for nanofiltration in polar aprotic solvents , 2007 .

[33]  William J. Koros,et al.  Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation , 2007 .

[34]  Tymen Visser Mixed gas plasticization phenomena in asymmetric membranes , 2006 .

[35]  Zhen Huang,et al.  Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES–zeolite beta mixed matrix dense-selective layer for gas separation , 2006 .

[36]  Li Ruixue,et al.  The development of high performance P84 co-polyimide hollow fibers for pervaporation dehydration of isopropanol , 2005 .

[37]  Tai‐Shung Chung,et al.  Fabrication and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol , 2005 .

[38]  Tai‐Shung Chung,et al.  Fundamental Characteristics of Sorption, Swelling, and Permeation of P84 Co-polyimide Membranes for Pervaporation Dehydration of Alcohols , 2005 .

[39]  J. N. Barsema,et al.  Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide , 2003 .

[40]  M. Boerrigter,et al.  Polyimide hollow fiber gas separation membranes: preparation and the suppression of plasticization in propane/propylene environments , 2001 .

[41]  William J. Koros,et al.  Formation of defect-free polyimide hollow fiber membranes for gas separations , 2000 .

[42]  Tai‐Shung Chung,et al.  The effect of shear rates on gas separation performance of 6FDA-durene polyimide hollow fibers , 2000 .

[43]  C. Hansen Hansen Solubility Parameters: A User's Handbook , 1999 .

[44]  Y. Yampolskii Polymeric Gas Separation Membranes , 1993 .

[45]  W. Koros,et al.  Aqueous quenched asymmetric polysulfone membranes prepared by dry/wet phase separation , 1993 .

[46]  I. Pinnau,et al.  Gas-permeation properties of asymmetric polycarbonate, polyestercarbonate, and fluorinated polyimide membranes prepared by the generalized dry-wet phase inversion process , 1992 .

[47]  J. M. Henis,et al.  Composite Hollow Fiber Membranes for Gas Separation: The Resistance Model Approach , 1981 .