Explicit formulas for the multivariate resultant
暂无分享,去创建一个
[1] F. S. Macaulay. Some Formulæ in Elimination , 1902 .
[2] A. L. Dixon. The Eliminant of Three Quantics in two Independent Variables , 1909 .
[3] M. Stark,et al. THE THEORY OF ELIMINATION , 1964 .
[4] V. M. Volosov,et al. Residues and their applications , 1971 .
[5] Daniel Lazard,et al. Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..
[6] John Canny,et al. The complexity of robot motion planning , 1988 .
[7] H. Stetter,et al. An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .
[8] J. Renegar,et al. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .
[9] John F. Canny,et al. Generalised Characteristic Polynomials , 1990, J. Symb. Comput..
[10] James Renegar,et al. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..
[11] Dinesh Manocha,et al. Implicit Representation of Rational Parametric Surfaces , 1992, J. Symb. Comput..
[12] A. K. T︠S︡ikh. Multidimensional Residues and Their Applications , 1992 .
[13] Marc Chardin. The Resultant via a Koszul Complex , 1993 .
[14] M. Chardin,et al. FORMULES A LA MACAULAY POUR LES SOUS-RESULTANTS EN PLUSIEURS VARIABLES , 1994 .
[15] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[16] Marie-Françoise Roy,et al. Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula , 1996 .
[17] J. Jouanolou. Formes d'inertie et résultant: un formulaire , 1997 .
[18] Tushar Saxena,et al. Efficient variable elimination using resultants , 1997 .
[19] Alicia Dickenstein,et al. Residues and Resultants , 1997, alg-geom/9702001.
[20] Bernard Mourrain,et al. Matrices in Elimination Theory , 1999, J. Symb. Comput..
[21] J. Maurice Rojas,et al. Solving Degenerate Sparse Polynomial Systems Faster , 1998, J. Symb. Comput..
[22] Teresa Krick,et al. Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.
[23] Ron Goldman,et al. Fast Computation of the Bezout and Dixon Resultant Matrices , 2002, J. Symb. Comput..