Explicit formulas for the multivariate resultant

[1]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[2]  A. L. Dixon The Eliminant of Three Quantics in two Independent Variables , 1909 .

[3]  M. Stark,et al.  THE THEORY OF ELIMINATION , 1964 .

[4]  V. M. Volosov,et al.  Residues and their applications , 1971 .

[5]  Daniel Lazard,et al.  Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..

[6]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[7]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[8]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[9]  John F. Canny,et al.  Generalised Characteristic Polynomials , 1990, J. Symb. Comput..

[10]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[11]  Dinesh Manocha,et al.  Implicit Representation of Rational Parametric Surfaces , 1992, J. Symb. Comput..

[12]  A. K. T︠S︡ikh Multidimensional Residues and Their Applications , 1992 .

[13]  Marc Chardin The Resultant via a Koszul Complex , 1993 .

[14]  M. Chardin,et al.  FORMULES A LA MACAULAY POUR LES SOUS-RESULTANTS EN PLUSIEURS VARIABLES , 1994 .

[15]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[16]  Marie-Françoise Roy,et al.  Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula , 1996 .

[17]  J. Jouanolou Formes d'inertie et résultant: un formulaire , 1997 .

[18]  Tushar Saxena,et al.  Efficient variable elimination using resultants , 1997 .

[19]  Alicia Dickenstein,et al.  Residues and Resultants , 1997, alg-geom/9702001.

[20]  Bernard Mourrain,et al.  Matrices in Elimination Theory , 1999, J. Symb. Comput..

[21]  J. Maurice Rojas,et al.  Solving Degenerate Sparse Polynomial Systems Faster , 1998, J. Symb. Comput..

[22]  Teresa Krick,et al.  Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.

[23]  Ron Goldman,et al.  Fast Computation of the Bezout and Dixon Resultant Matrices , 2002, J. Symb. Comput..