Experimental and modeling study on hydrate formation in wet activated carbon.

The formation of methane hydrate in wet activated carbon was studied. The experimental results demonstrated that the formation of methane hydrate could be enhanced by immersing activated carbon in water. A maximum actual storage capacity of 212 standard volumes of gas per volume of water was achieved. The apparent storage capacity of the activated carbon + hydrate bed increased with the increasing of mass ratio of water to carbon until reaching a maximum, then decreased drastically as the bulk water phase emerged above the wet carbon bed. The highest apparent storage capacity achieved was 140 v/v. A hydrate formation mechanism in the wet activated carbon was proposed and a mathematical model was developed. It has been shown that the proposed model is adequate for describing the hydrate formation kinetics in wet activated carbon. The kinetic model and the measured kinetic data were used to determine the formation conditions of methane hydrate in wet carbon, which are in good agreement with literature values and demonstrate that hydrate formation in wet carbon requires lower temperature or higher pressure than in the free water system.