Genetic analysis of motor axon pathfinding in zebrafish.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiii List of Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvi Chapter 1: Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Early studies on motor axon pathfinding. . . . . . . . . . . . . . . . . . 3 Motor axons respond to chemotrophic gradients. . . . . . . . . . . .4 Cellular Cues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Molecular Cues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Mechanisms of motor axon pathfinding. . . . . . . . . . . . . . . . . .12 Genetic Screens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Zebrafish as a model for axial innervation. . . . . . . . . . . . . . . .18 Zebrafish mutants provide insight into ventral pathfinding. . . .22 viii Chapter 2: Zebrafish topped is required in ventral motor axon guidance. . . . . .28 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Fish Care and Maintainence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Generation of Mutants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Genetic Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Whole-mount antibody labeling. . . . . . . . . . . . . . . . . . . . . . . . . . .32 Whole-mount RNA in situ hybridization. . . . . . . . . . . . . . . . . . . . .33 Single cell labeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Blastula Transplants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Genotyping from blastulae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 topped is a recessive, semi-lethal mutation. . . . . . . . . . . . . . . . . .36 CaP axons in topped mutants are delayed entering the ventral myotome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Topped is required for the proper outgrowth of ventral motor nerves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Dorsally projecting axons are unaffected in topped mutants. . . . .39 Other neuronal cell types and myotome are unaffected in topped mutants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Genetic mosaics reveal that Topped function is non-cell autonomous for CaP axons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Topped is required in ventromedial fast muscle. . . . . . . . . . . . . . 43

[1]  W. Talbot,et al.  Positional cloning of mutated zebrafish genes. , 1999, Methods in cell biology.

[2]  E. Pasquale,et al.  Expression of EphA4, Ephrin-A2 and Ephrin-A5 during Axon Outgrowth to the Hindlimb Indicates Potential Roles in Pathfinding , 2000, Developmental Neuroscience.

[3]  J. Y. Kuwada,et al.  Cell recognition by neuronal growth cones in a simple vertebrate embryo , 1986, Science.

[4]  Karthryn W. Tonsey,et al.  Cells and cell‐interactions that guide motor axons in the developing chick embryo , 1991 .

[5]  A. Moorman,et al.  Inactivation of the Sema5a Gene Results in Embryonic Lethality and Defective Remodeling of the Cranial Vascular System , 2005, Molecular and Cellular Biology.

[6]  R. Kalb,et al.  Molecular basis of semaphorin-mediated axon guidance. , 2000, Journal of neurobiology.

[7]  S. Higashijima,et al.  Migration of zebrafish spinal motor nerves into the periphery requires multiple myotome-derived cues. , 2002, Developmental biology.

[8]  Guoping Feng,et al.  Postsynaptic requirement for Abl kinases in assembly of the neuromuscular junction , 2003, Nature Neuroscience.

[9]  C. Goodman,et al.  Slit Is the Midline Repellent for the Robo Receptor in Drosophila , 1999, Cell.

[10]  C. Basilico,et al.  The receptor tyrosine kinase ARK mediates cell aggregation by homophilic binding , 1995, Molecular and cellular biology.

[11]  M. Westerfield,et al.  Identified motoneurons and their innervation of axial muscles in the zebrafish , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  S. Thanos,et al.  Course corrections of deflected retinal axons on the tectum of the chick embryo , 1986, Neuroscience Letters.

[13]  N. Patel,et al.  Expression of engrailed during segmentation in grasshopper and crayfish. , 1989, Development.

[14]  K. Guan,et al.  Mapping Netrin Receptor Binding Reveals Domains of Unc5 Regulating Its Tyrosine Phosphorylation , 2004, The Journal of Neuroscience.

[15]  R. Ho,et al.  Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors , 1990, Nature.

[16]  J. Eisen,et al.  Sclerotome development and peripheral nervous system segmentation in embryonic zebrafish. , 1997, Development.

[17]  N. Perrimon,et al.  A Drosophila Homolog of Cyclase-Associated Proteins Collaborates with the Abl Tyrosine Kinase to Control Midline Axon Pathfinding , 2002, Neuron.

[18]  L. Landmesser The acquisition of motoneuron subtype identity and motor circuit formation , 2001, International Journal of Developmental Neuroscience.

[19]  B. Dickson,et al.  Comm Sorts Robo to Control Axon Guidance at the Drosophila Midline , 2002, Cell.

[20]  Giorgio F. Gilestro,et al.  Plexin‐B3 is a functional receptor for semaphorin 5A , 2004, EMBO reports.

[21]  C. Beattie Control of motor axon guidance in the zebrafish embryo , 2000, Brain Research Bulletin.

[22]  John G Flanagan,et al.  Topographically Specific Effects of ELF-1 on Retinal Axon Guidance In Vitro and Retinal Axon Mapping In Vivo , 1996, Cell.

[23]  J. Culotti,et al.  UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans , 1992, Neuron.

[24]  L. Landmesser,et al.  Distinct roles for adhesion molecules during innervation of embryonic chick muscle. , 1988, Developmental biology.

[25]  R. Diaz-Arrastia,et al.  Molecular and Cellular Approaches to Neural Development , 1998 .

[26]  Jonathan A Raper,et al.  Semaphorins and their receptors in vertebrates and invertebrates , 2000, Current Opinion in Neurobiology.

[27]  D. Hall,et al.  The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans , 1990, Neuron.

[28]  J. Zhang,et al.  The zebrafish unplugged gene controls motor axon pathway selection. , 2000, Development.

[29]  J. Eisen,et al.  Pathfinding by zebrafish motoneurons in the absence of normal pioneer axons. , 1992, Development.

[30]  Brigitte L. Arduini,et al.  Specific pan‐neural crest expression of zebrafish Crestin throughout embryonic development , 2001, Developmental dynamics : an official publication of the American Association of Anatomists.

[31]  L. Landmesser,et al.  The development of motor projection patterns in the chick hind limb. , 1978, The Journal of physiology.

[32]  M. Schachner,et al.  Chondroitin sulfates affect the formation of the segmental motor nerves in zebrafish embryos. , 2000, Developmental biology.

[33]  Julie L. Lefebvre,et al.  Zebrafish unplugged reveals a role for muscle-specific kinase homologs in axonal pathway choice , 2004, Nature Neuroscience.

[34]  M. Bate,et al.  The Origin, Location, and Projections of the Embryonic Abdominal Motorneurons of Drosophila , 1997, The Journal of Neuroscience.

[35]  U. Monani,et al.  Molecular, Cellular and Developmental Biology Program – Specialization 2018/2019 , 2017 .

[36]  P. Jhabvala,et al.  Tyrosine phosphorylation in early embryonic growth cones , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  B. Wightman,et al.  Genes that guide growth cones along the C. elegans ventral nerve cord. , 1997, Development.

[38]  M. Sarras,et al.  Cre‐mediated site‐specific recombination in zebrafish embryos , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[39]  T. Yagi,et al.  Disruption of Semaphorin III/D Gene Causes Severe Abnormality in Peripheral Nerve Projection , 1997, Neuron.

[40]  C. Goodman,et al.  Repulsive Axon Guidance Abelson and Enabled Play Opposing Roles Downstream of the Roundabout Receptor , 2000, Cell.

[41]  R. Keynes,et al.  Spinal nerve segmentation in the chick embryo: analysis of distinct axon-repulsive systems. , 2000, Developmental biology.

[42]  K. Zinn,et al.  Competition and cooperation among receptor tyrosine phosphatases control motoneuron growth cone guidance in Drosophila. , 1997, Development.

[43]  Michael R. Taylor,et al.  The Zebrafish pob Gene Encodes a Novel Protein Required for Survival of Red Cone Photoreceptor Cells Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession no. AY745978. , 2005, Genetics.

[44]  C. Kimmel,et al.  The fub-1 mutation blocks initial myofibril formation in zebrafish muscle pioneer cells. , 1991, Developmental biology.

[45]  M. Bastiani,et al.  Guidance of neuronal growth cones in the grasshopper embryo. II. Recognition of a specific axonal pathway by the aCC neuron , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  J. Eisen,et al.  The growth cones of identified motoneurons in embryonic zebrafish select appropriate pathways in the absence of specific cellular interactions , 1989, Neuron.

[47]  R. Ho,et al.  Development of neuromuscular specificity in the grasshopper embryo: guidance of motoneuron growth cones by muscle pioneers , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  C. Kimmel,et al.  Temporal separation in the specification of primary and secondary motoneurons in zebrafish. , 1997, Developmental biology.

[49]  D. Higgins,et al.  Thrombospondin promotes process outgrowth in neurons from the peripheral and central nervous systems. , 1992, Developmental biology.

[50]  C. Goodman,et al.  Genes that control neuromuscular specificity in Drosophila , 1993, Cell.

[51]  M. Schachner,et al.  Zebrafish semaphorin Z1b inhibits growing motor axons in vivo , 1999, Mechanisms of Development.

[52]  C. Goodman,et al.  Genetic Analysis of the Mechanisms Controlling Target Selection: Complementary and Combinatorial Functions of Netrins, Semaphorins, and IgCAMs , 1998, Cell.

[53]  Philippe Soriano,et al.  Impaired neurite outgrowth of src-minus cerebellar neurons on the cell adhesion molecule L1 , 1994, Neuron.

[54]  Kathryn W. Tosney Proximal tissues and patterned neurite outgrowth at the lumbosacral level of the chick embryo: deletion of the dermamyotome. , 1987, Developmental biology.

[55]  M. Poo,et al.  Unified Nomenclature for the Semaphorins/Collapsins , 1999, Cell.

[56]  J. Eisen Patterning motoneurons in the vertebrate nervous system , 1999, Trends in Neurosciences.

[57]  R. Burgemeister,et al.  Approximately half of the erythroblasts in maternal blood are of fetal origin. , 1999, Molecular human reproduction.

[58]  Alfred Gierer,et al.  Directional cues for growing axons forming the retinotectal projection , 1987 .

[59]  S. Ekker,et al.  Effective targeted gene ‘knockdown’ in zebrafish , 2000, Nature Genetics.

[60]  L. Landmesser,et al.  Motoneurone projection patterns in the chick hind limb following early partial reversals of the spinal cord. , 1980, The Journal of physiology.

[61]  E. Knapik,et al.  A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. , 1996, Development.

[62]  Cori Bargmann,et al.  Genes required for axon pathfinding and extension in the C. elegans nerve ring. , 1999, Development.

[63]  M. Granato,et al.  The zebrafish diwanka gene controls an early step of motor growth cone migration. , 1999, Development.

[64]  S. Henke-Fahle,et al.  Avoidance of posterior tectal membranes by temporal retinal axons. , 1987, Development.

[65]  H. Sink,et al.  Early ablation of target muscles modulates the arborisation pattern of an identified embryonic Drosophila motor axon. , 1991, Development.

[66]  S. Thanos,et al.  Outgrowth and directional specificity of fibers from embryonic retinal transplants in the chick optic tectum. , 1987, Brain research.

[67]  L. Goldstein,et al.  Receptor Tyrosine Phosphatases Are Required for Motor Axon Guidance in the Drosophila Embryo , 1996, Cell.

[68]  R. Keynes,et al.  Axon guidance and somites , 1997, Cell and Tissue Research.

[69]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[70]  M. Hollyday,et al.  Chick wing innervation. I. Time course of innervation and early differentiation of the peripheral nerve pattern , 1995, The Journal of comparative neurology.

[71]  R. Sperry CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Juang,et al.  Phosphorylation of Enabled by the DrosophilaAbelson Tyrosine Kinase Regulates the In Vivo Function and Protein-Protein Interactions of Enabled , 1998, Molecular and Cellular Biology.

[73]  Brigitte L. Arduini,et al.  Defective Skeletogenesis with Kidney Stone Formation in Dwarf Zebrafish Mutant for trpm7 , 2005, Current Biology.

[74]  J. Postlethwait,et al.  Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. , 1993, Development.

[75]  Philippe Soriano,et al.  NCAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice , 1994, The Journal of cell biology.

[76]  M. Schachner,et al.  Anterior‐posterior subdivision of the somite in embryonic zebrafish: Implications for motor axon guidance , 1998, Developmental dynamics : an official publication of the American Association of Anatomists.

[77]  David J. Anderson,et al.  Eph Family Transmembrane Ligands Can Mediate Repulsive Guidance of Trunk Neural Crest Migration and Motor Axon Outgrowth , 1997, Neuron.

[78]  M. Takeichi Morphogenetic roles of classic cadherins. , 1995, Current opinion in cell biology.

[79]  M. Westerfield,et al.  Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. , 1996, Development.

[80]  H. Baier,et al.  Axon guidance by gradients of a target-derived component. , 1992, Science.

[81]  E. Pasquale,et al.  EphA4 constitutes a population-specific guidance cue for motor neurons. , 2002, Developmental biology.

[82]  Anil K. Challa,et al.  Identification and characterization of roundabout orthologs in zebrafish , 2001, Mechanisms of Development.

[83]  C. Amemiya,et al.  Zebrafish YAC, BAC, and PAC genomic libraries. , 1999, Methods in cell biology.

[84]  P Z Myers,et al.  Spinal motoneurons of the larval zebrafish , 1985, The Journal of comparative neurology.

[85]  T. Yagi,et al.  Neuropilin–Semaphorin III/D-Mediated Chemorepulsive Signals Play a Crucial Role in Peripheral Nerve Projection in Mice , 1997, Neuron.

[86]  M. Westerfield,et al.  Development and axonal outgrowth of identified motoneurons in the zebrafish , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  S. Pike,et al.  Identified primary motoneurons in embryonic zebrafish select appropriate pathways in the absence of other primary motoneurons , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  M. Ekker,et al.  A microsatellite genetic linkage map for zebrafish (Danio rerio) , 1998, Nature Genetics.

[89]  K. S. O'Shea,et al.  Thrombospondin and a 140 kd fragment promote adhesion and neurite outgrowth from embryonic central and peripheral neurons and from PC12 cells , 1991, Neuron.

[90]  J. Eisen,et al.  The spt-1 mutation alters segmental arrangement and axonal development of identified neurons in the spinal cord of the embryonic zebrafish , 1991, Neuron.

[91]  Jennifer L. Doyle,et al.  Genetic Analysis of Netrin Genes in Drosophila: Netrins Guide CNS Commissural Axons and Peripheral Motor Axons , 1996, Neuron.

[92]  G. Streisinger,et al.  Production of clones of homozygous diploid zebra fish (Brachydanio rerio) , 1981, Nature.

[93]  Jeffrey A. Golden,et al.  Semaphorin III is needed for normal patterning and growth of nerves, bones and heart , 1996, Nature.

[94]  E. Linney,et al.  Windows into development: historic, current, and future perspectives on transgenic zebrafish. , 2003, Developmental biology.

[95]  C. Goodman,et al.  The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules , 1993, Cell.

[96]  B. Dickson,et al.  Comm function in commissural axon guidance: cell-autonomous sorting of Robo in vivo , 2005, Nature Neuroscience.

[97]  J. Eisen,et al.  Mutations in the stumpy gene reveal intermediate targets for zebrafish motor axons. , 2000, Development.

[98]  S. Schneider-Maunoury,et al.  Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons. , 2000, Development.

[99]  C. Kimmel,et al.  Organization of hindbrain segments in the zebrafish embryo , 1990, Neuron.

[100]  F. Bonhoeffer,et al.  Recognition of cell types by axonal growth cones in vitro , 1980, Nature.

[101]  A. Graham,et al.  Printed in Great Britain © The Company of Biologists Limited 1999 , 1998 .

[102]  M. Westerfield,et al.  Pathfinding by Identified Zebrafish Motoneurons in the Absence of Muscle Pioneers , 1997, The Journal of Neuroscience.

[103]  Kai Zinn,et al.  A gain-of-function screen for genes controlling motor axon guidance and synaptogenesis in Drosophila , 2001, Current Biology.

[104]  W. Shoji,et al.  Laser-induced gene expression in specific cells of transgenic zebrafish. , 2000, Development.

[105]  A. Varela-Echavarría,et al.  Motor Axon Subpopulations Respond Differentially to the Chemorepellents Netrin-1 and Semaphorin D , 1997, Neuron.

[106]  L. Landmesser,et al.  Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region , 1994, Neuron.

[107]  N. Patel,et al.  Fasciclin IV: Sequence, expression, and function during growth cone guidance in the grasshopper embryo , 1992, Neuron.

[108]  B. Link,et al.  Analysis of the Zebrafish perplexed Mutation Reveals Tissue-Specific Roles for de Novo Pyrimidine Synthesis During Development , 2005, Genetics.

[109]  E. Knapik,et al.  Zebrafish genetic map with 2000 microsatellite markers. , 1999, Genomics.

[110]  M. Allende,et al.  Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. , 1996, Development.

[111]  L. Landmesser The generation of neuromuscular specificity. , 1980, Annual review of neuroscience.

[112]  N. Gale,et al.  Eph Receptors and Ephrin Expression in Cranial Motor Neurons and the Branchial Arches of the Chick Embryo , 2000, Molecular and Cellular Neuroscience.

[113]  M. Halpern,et al.  Genes dependent on zebrafish cyclops function identified by AFLP differential gene expression screen , 2000, Genesis.

[114]  L. Rodino‐Klapac,et al.  Zebrafish topped is required for ventral motor axon guidance. , 2004, Developmental biology.

[115]  J. Postlethwait,et al.  Half-tetrad analysis in zebrafish: mapping the ros mutation and the centromere of linkage group I. , 1995, Genetics.

[116]  A. Kolodkin,et al.  Functions of netrins and semaphorins in axon guidance , 1996, Current Opinion in Neurobiology.

[117]  R. Adams,et al.  A novel class of murine semaphorins with homology to thrombospondin is differentially expressed during early embryogenesis , 1996, Mechanisms of Development.

[118]  A. Schier,et al.  Efficient recovery of ENU-induced mutations from the zebrafish germline. , 1994, Genetics.

[119]  M. Schachner,et al.  The perplexing multifunctionality of janusin, a tenascin-related molecule. , 1994, Perspectives on developmental neurobiology.

[120]  J. Postlethwait,et al.  Centromere-linkage analysis and consolidation of the zebrafish genetic map. , 1996, Genetics.

[121]  M. Granato,et al.  Motor axon migration: a long way to go. , 2003, Developmental biology.

[122]  R. Adams,et al.  Murine semaphorin D/collapsin is a member of a diverse gene family and creates domains inhibitory for axonal extension , 1995, Neuron.

[123]  B. Ferguson Development of motor innervation of the chick following dorsal-ventral limb bud rotations , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[124]  Friedrich Bonhoeffer,et al.  Position-dependent properties of retinal axons and their growth cones , 1985, Nature.

[125]  F. Bonhoeffer,et al.  In vitro experiments on axon guidance demonstrating an anterior‐posterior gradient on the tectum. , 1982, The EMBO journal.

[126]  J. Postlethwait,et al.  A genetic linkage map for the zebrafish. , 1994, Science.

[127]  Hong-jun Song,et al.  Knowing How to Navigate: Mechanisms of Semaphorin Signaling in the Nervous System , 2002, Science's STKE.

[128]  C. Goodman,et al.  Mutations affecting growth cone guidance in drosophila: Genes necessary for guidance toward or away from the midline , 1993, Neuron.

[129]  M. Crow,et al.  Myosin expression and specialization among the earliest muscle fibers of the developing avian limb. , 1986, Developmental biology.

[130]  M. Tessier-Lavigne,et al.  The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons , 1995, Cell.

[131]  C. Goodman The likeness of being: Phylogenetically conserved molecular mechanisms of growth cone guidance , 1994, Cell.

[132]  David R Corey,et al.  Morpholino antisense oligonucleotides: tools for investigating vertebrate development , 2001, Genome Biology.

[133]  J. Greer,et al.  Polysialylated NCAM expression during motor axon outgrowth and myogenesis in the fetal rat , 1998, The Journal of comparative neurology.

[134]  H. Baier,et al.  A radiation hybrid map of the zebrafish genome , 1999, Nature Genetics.

[135]  J. Eisen,et al.  Notochord alters the permissiveness of myotome for pathfinding by an identified motoneuron in embryonic zebrafish. , 1997, Development.

[136]  M. Goulding,et al.  Expression of theTyro4/Mek4/Cek4Gene Specifically Marks a Subset of Embryonic Motor Neurons and Their Muscle Targets , 1996, Molecular and Cellular Neuroscience.

[137]  Michael J. Hansen,et al.  Semaphorin 5A Is a Bifunctional Axon Guidance Cue Regulated by Heparan and Chondroitin Sulfate Proteoglycans , 2004, Neuron.

[138]  L. Reichardt,et al.  Vitronectin and thrombospondin promote retinal neurite outgrowth: Developmental regulation and role of integrins , 1991, Neuron.

[139]  D. Wagner,et al.  Genetic screens for genes controlling motor nerve-muscle development and interactions. , 2005, Developmental biology.

[140]  M. Westerfield,et al.  Pathway selection by growth cones of identified motoneurones in live zebra fish embryos , 1986, Nature.

[141]  A. Kolodkin,et al.  Semaphorin junction: making tracks toward neural connectivity , 2003, Current Opinion in Neurobiology.

[142]  Kathryn W. Tosney,et al.  Contact-mediated mechanisms of motor axon segmentation , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[143]  T. Burstyn-Cohen,et al.  F-spondin is a contact-repellent molecule for embryonic motor neurons , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[144]  D. Raible,et al.  Early pressure screens. , 1999, Methods in cell biology.

[145]  L. Landmesser,et al.  Polysialic acid as a regulator of intramuscular nerve branching during embryonic development , 1990, Neuron.