Quantum algorithms and learning theory

This thesis studies strengths and weaknesses of quantum computers. In the first part we present three contributions to quantum algorithms. 1) consider a search space of N elements. One of these elements is "marked" and our goal is to find this. We describe a quantum algorithm to solve this problem using essentially sqrt{N} queries and other operations, improving over the gate count of Grover's algorithm. 2) We give a succinct characterization of quantum algorithms in terms of polynomials, and develop a new technique for showing upper and lower bounds on quantum query complexity based on this. 3) One generic technique used to compute the minimum of a given function is "gradient descent". We present a quantum gradient-calculation algorithm and a gradient-optimization algorithm that is quadratically faster than classical algorithms. In the second part of this thesis we look at quantum learning theory. 1) We survey quantum learning theory, describing the main results known for three models of learning, using classical as well as quantum data: exact learning from membership queries, the probably approximately correct (PAC) learning model, and the agnostic learning model. 2) We then consider if a quantum learner can PAC-learn a given concept class from fewer quantum examples. We give a negative answer by showing that quantum examples are not more powerful than classical random examples, both for PAC learning and for agnostic learning.

[1]  Oded Regev,et al.  The List-Decoding Size of Fourier-Sparse Boolean Functions , 2015, TOCT.

[2]  S. Zhong Orthogonality and quantum geometry: Towards a relational reconstruction of quantum theory , 2015 .

[3]  Rocco A. Servedio,et al.  Improved Bounds on Quantum Learning Algorithms , 2004, Quantum Inf. Process..

[4]  Rianne Kaptein,et al.  Effective focused retrieval by exploiting query context and document structure , 2012, SIGF.

[5]  E. Michael Azoff,et al.  Neural Network Time Series: Forecasting of Financial Markets , 1994 .

[6]  Anmer Daskin Quantum Principal Component Analysis , 2015 .

[7]  Rocco A. Servedio,et al.  Quantum Algorithms for Learning and Testing Juntas , 2007, Quantum Inf. Process..

[8]  Cedric Yen-Yu Lin,et al.  Upper Bounds on Quantum Query Complexity Inspired by the Elitzur--Vaidman Bomb Tester , 2014, Theory Comput..

[9]  Srinivasan Arunachalam,et al.  Optimizing quantum optimization algorithms via faster quantum gradient computation , 2017, SODA.

[10]  Timur Oikhberg,et al.  The ``maximal" tensor product of operator spaces , 1997 .

[11]  Stephen P. Jordan,et al.  Quantum computation beyond the circuit model , 2008, 0809.2307.

[12]  Michele Mosca,et al.  Finding shortest lattice vectors faster using quantum search , 2015, Designs, Codes and Cryptography.

[13]  P. Henk,et al.  Nonstandard provability for Peano Arithmetic: A modal perspective , 2016 .

[14]  Roger R. Smith,et al.  Completely Bounded Multilinear Maps and Grothendieck's Inequality , 1988 .

[15]  Pierre Baldi,et al.  Autoencoders, Unsupervised Learning, and Deep Architectures , 2011, ICML Unsupervised and Transfer Learning.

[16]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[17]  Andris Ambainis,et al.  Dense quantum coding and quantum finite automata , 2002, JACM.

[18]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[19]  Ryan O'Donnell,et al.  Learning functions of k relevant variables , 2004, J. Comput. Syst. Sci..

[20]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[21]  Troy Lee,et al.  Quantum Query Complexity of State Conversion , 2010, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[22]  Gilles Brassard,et al.  Quantum Algorithm for the Collision Problem , 2016, Encyclopedia of Algorithms.

[23]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[24]  Ashley Montanaro On the Distinguishability of Random Quantum States , 2007 .

[25]  Jean-Yves Audibert Fast learning rates in statistical inference through aggregation , 2007, math/0703854.

[26]  Teresa Piovesan Quantum entanglement: insights via graph parameters and conic optimization , 2016 .

[27]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[28]  Ashley Montanaro,et al.  Sequential measurements, disturbance and property testing , 2016, SODA.

[29]  Ronald de Wolf,et al.  Guest Column: A Survey of Quantum Learning Theory , 2017, SIGA.

[30]  E. Thomas,et al.  A polarization identity for multilinear maps , 2013, 1309.1275.

[31]  Andrea Rocchetto,et al.  Stabiliser states are efficiently PAC-learnable , 2017, Quantum Inf. Comput..

[32]  Aleksandrs Belovs Variations on Quantum Adversary , 2015 .

[33]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[34]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[35]  Nader H. Bshouty,et al.  Learning DNF over the uniform distribution using a quantum example oracle , 1995, COLT '95.

[36]  Yuri I. Manin,et al.  Classical computing, quantum computing, and Shor's factoring algorithm , 1999, quant-ph/9903008.

[37]  Xiaodi Wu,et al.  Sample-Optimal Tomography of Quantum States , 2015, IEEE Transactions on Information Theory.

[38]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[39]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[40]  Christoph Dürr,et al.  A Quantum Algorithm for Finding the Minimum , 1996, ArXiv.

[41]  Raul Andres Leal Rodriguez,et al.  Modalities through the looking glass: a study on coalgebraic modal logics and their applications , 2011 .

[42]  M. W. Madsen The kid, the clerk, and the gambler: Critical studies in statistics and cognitive science , 2015 .

[43]  T. Sanders,et al.  Analysis of Boolean Functions , 2012, ArXiv.

[44]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[45]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[46]  Philip M. Long,et al.  Prediction, Learning, Uniform Convergence, and Scale-Sensitive Dimensions , 1998, J. Comput. Syst. Sci..

[47]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[48]  Marco Tomamichel,et al.  Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.

[49]  Thomas Vidick,et al.  Explicit Lower and Upper Bounds on the Entangled Value of Multiplayer XOR Games , 2011 .

[50]  Sebastian Dörn,et al.  Quantum complexity of graph and algebraic problems , 2008 .

[51]  Ronald de Wolf,et al.  A Brief Introduction to Fourier Analysis on the Boolean Cube , 2008, Theory Comput..

[52]  M. Talagrand Sharper Bounds for Gaussian and Empirical Processes , 1994 .

[53]  Andris Ambainis,et al.  Polynomial degree vs. quantum query complexity , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[54]  Piotr Indyk,et al.  Nearly optimal sparse fourier transform , 2012, STOC '12.

[55]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[56]  Krysta Marie Svore,et al.  Quantum Speed-ups for Semidefinite Programming , 2016, ArXiv.

[57]  Ashley Montanaro,et al.  Learning stabilizer states by Bell sampling , 2017, 1707.04012.

[58]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[59]  Edgar Andrade-Lotero Models of language: towards a practice-based account of information in natural language , 2012 .

[60]  B. D. Janssen Retained or lost in transmission?: Analyzing and predicting stability in Dutch folk songs , 2018 .

[61]  P. Benioff Quantum mechanical hamiltonian models of turing machines , 1982 .

[62]  Rocco A. Servedio,et al.  Testing Fourier Dimensionality and Sparsity , 2009, SIAM J. Comput..

[63]  Srinivasan Arunachalam,et al.  Quantum hedging in two-round prover-verifier interactions , 2013, TQC.

[64]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[65]  Andris Ambainis,et al.  Quantum algorithms for search with wildcards and combinatorial group testing , 2012, Quantum Inf. Comput..

[66]  Jihun Park,et al.  The geometry of quantum learning , 2010, Quantum Inf. Process..

[67]  Simone Severini,et al.  Quantum machine learning: a classical perspective , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[68]  Ronald de Wolf,et al.  Optimizing the number of gates in quantum search , 2017, Quantum Inf. Comput..

[69]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[70]  David W. Bulger Quantum basin hopping with gradient-based local optimisation , 2005, quant-ph/0507193.

[71]  Hugo C. Huurdeman Supporting the complex dynamics of the information seeking process , 2018 .

[72]  Harry Buhrman,et al.  On Computation and Communication with Small Bias , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[73]  Claudio Gentile,et al.  Improved lower bounds for learning from noisy examples: an information-theoretic approach , 1998, COLT' 98.

[74]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[75]  Aleksandrs Belovs,et al.  Quantum Algorithms for Learning Symmetric Juntas via the Adversary Bound , 2013, 2014 IEEE 29th Conference on Computational Complexity (CCC).

[76]  Joel A. Tropp,et al.  Column subset selection, matrix factorization, and eigenvalue optimization , 2008, SODA.

[77]  Peter L. Bartlett,et al.  Neural Network Learning - Theoretical Foundations , 1999 .

[78]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[79]  Xiaodi Wu,et al.  Exponential Quantum Speed-ups for Semidefinite Programming with Applications to Quantum Learning , 2017, ArXiv.

[80]  Can M. Le,et al.  Sparse random graphs: regularization and concentration of the Laplacian , 2015, ArXiv.

[81]  D. Angluin,et al.  Learning From Noisy Examples , 1988, Machine Learning.

[82]  Scott Aaronson,et al.  Quantum lower bounds for the collision and the element distinctness problems , 2004, JACM.

[83]  Marijn Koolen,et al.  The meaning of structure: the value of link evidence for information retrieval , 2011, SIGF.

[84]  Hans Ulrich Simon,et al.  An Almost Optimal PAC Algorithm , 2015, COLT.

[85]  M. Yu. Moshkov,et al.  On conditional tests , 1982 .

[86]  Aram W. Harrow,et al.  Quantum algorithm for solving linear systems of equations , 2010 .

[87]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[88]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[89]  E. Knill,et al.  Reversing quantum dynamics with near-optimal quantum and classical fidelity , 2000, quant-ph/0004088.

[90]  Noga Alon,et al.  Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.

[91]  Dmitry Gavinsky Quantum predictive learning and communication complexity with single input , 2012, Quantum Inf. Comput..

[92]  Alexander A. Sherstov Making polynomials robust to noise , 2012, STOC '12.

[93]  Troy Lee,et al.  Negative weights make adversaries stronger , 2007, STOC '07.

[94]  Karl Zeller,et al.  Schwankung von Polynomen zwischen Gitterpunkten , 1964 .

[95]  Andris Ambainis,et al.  Average/Worst-Case Gap of Quantum Query Complexities by On-Set Size , 2009, ArXiv.

[96]  Mario Szegedy,et al.  All Quantum Adversary Methods Are Equivalent , 2005, ICALP.

[97]  Dana Angluin,et al.  Queries and concept learning , 1988, Machine Learning.

[98]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[99]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[100]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[101]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[102]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .

[103]  Aleksandrs Belovs,et al.  Span programs for functions with constant-sized 1-certificates: extended abstract , 2011, STOC '12.

[104]  Steve Hanneke,et al.  The Optimal Sample Complexity of PAC Learning , 2015, J. Mach. Learn. Res..

[105]  Frédéric Magniez,et al.  Search via quantum walk , 2006, STOC '07.

[106]  Peter Wittek,et al.  Quantum Machine Learning: What Quantum Computing Means to Data Mining , 2014 .

[107]  Scott Aaronson,et al.  Quantum Machine Learning Algorithms : Read the Fine Print , 2015 .

[108]  G. Scarpa Quantum entanglement in non-local games, graph parameters and zero-error information theory , 2013 .

[109]  G. Murphy C*-Algebras and Operator Theory , 1990 .

[110]  David Haussler,et al.  Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications , 1992, Inf. Comput..

[111]  Christof Zalka GROVER'S QUANTUM SEARCHING ALGORITHM IS OPTIMAL , 1997, quant-ph/9711070.

[112]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[113]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[114]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[115]  Justin Thaler,et al.  The polynomial method strikes back: tight quantum query bounds via dual polynomials , 2017, Electron. Colloquium Comput. Complex..

[116]  Nishimura Harumichi,et al.  Unbounded-Error Quantum Query Complexity , 2008 .

[117]  Mark Braverman,et al.  The Grothendieck Constant is Strictly Smaller than Krivine's Bound , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[118]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[119]  Srinivasan Arunachalam Quantum Speed-ups for Boolean Satisfiability and Derivative-Free Optimization , 2014 .

[120]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[121]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1989, 30th Annual Symposium on Foundations of Computer Science.

[122]  Alexandr Andoni,et al.  Learning Sparse Polynomial Functions , 2014, SODA.

[123]  R. Feynman Simulating physics with computers , 1999 .

[124]  A. Prakash,et al.  Quantum gradient descent for linear systems and least squares , 2017, Physical Review A.

[125]  Lov K. Grover Trade-offs in the quantum search algorithm , 2002 .

[126]  Gilles Brassard,et al.  Quantum speed-up for unsupervised learning , 2012, Machine Learning.

[127]  A. Montanaro Quantum speedup of Monte Carlo methods , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[128]  R. Garrido Alhama Computational modelling of Artificial Language Learning : Retention, Recognition & Recurrence , 2017 .

[129]  Toniann Pitassi,et al.  Deterministic Communication vs. Partition Number , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[130]  Ronald de Wolf,et al.  Optimal Quantum Sample Complexity of Learning Algorithms , 2016, CCC.

[131]  Andris Ambainis,et al.  Quantum lower bounds by quantum arguments , 2000, STOC '00.

[132]  Noam Nisan,et al.  CREW PRAMS and decision trees , 1989, STOC '89.

[133]  Fleur L. Bouwer,et al.  What do we need to hear a beat? The influence of attention, musical abilities, and accents on the perception of metrical rhythm , 2016 .

[134]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[135]  Scott Aaronson,et al.  The learnability of quantum states , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[136]  Ronald de Wolf,et al.  Two new results about quantum exact learning , 2021, Quantum.

[137]  Hans Ulrich Simon,et al.  General bounds on the number of examples needed for learning probabilistic concepts , 1993, COLT '93.

[138]  Tibor Hegedüs,et al.  Generalized Teaching Dimensions and the Query Complexity of Learning , 1995, COLT.