On the KPZ equation with fractional diffusion: Global regularity and existence results

In this work we analyze the existence of solutions to the fractional quasilinear problem,

[1]  R. Durán,et al.  Weighted a priori estimates for the Poisson equation , 2008 .

[2]  Ivan Corwin The Kardar-Parisi-Zhang equation and universality class , 2011, 1106.1596.

[3]  L. Véron,et al.  Semilinear fractional elliptic equations with gradient nonlinearity involving measures , 2013, 1308.6720.

[4]  Wojbor A. Woyczyński,et al.  Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws , 2001 .

[5]  B. Abdellaoui,et al.  On fractional p-Laplacian parabolic problem with general data , 2016, 1612.01301.

[6]  Tommaso Leonori,et al.  Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations , 2015 .

[7]  Yvan Martel,et al.  Complete blow up and global behaviour of solutions of ut - Δu = g(u) , 1998 .

[8]  Alessio Figalli,et al.  Regularity of solutions to the parabolic fractional obstacle problem , 2011, 1101.5170.

[9]  Wojbor A. Woyczyński,et al.  Fractal Hamilton-Jacobi-KPZ equations , 2006 .

[10]  Xavier Ros-Oton,et al.  The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary , 2012, 1207.5985.

[11]  B. Gilding The Cauchy problem for ut=?u+|?u|qut=?u+|?u|q, large-time behaviour , 2003 .

[12]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[13]  J. Droniou,et al.  Fractal First-Order Partial Differential Equations , 2006 .

[14]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[15]  Wojbor A. Woyczyński,et al.  Burgers-KPZ turbulence : Göttingen lectures , 1998 .

[16]  Krzysztof Bogdan,et al.  Estimates of the Green Function for the Fractional Laplacian Perturbed by Gradient , 2010, 1009.2472.

[17]  L. Véron,et al.  Semilinear fractional elliptic equations involving measures , 2013, 1305.0945.

[18]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[19]  G. I. Barenblatt,et al.  Self-similar intermediate asymptotics for a degenerate parabolic filtration-absorption equation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Song,et al.  Dirichlet Heat Kernel Estimates for Stable Processes with Singular Drift In Unbounded C1,1 Open Sets , 2014 .

[21]  Martin Hairer Solving the KPZ equation , 2011, 1109.6811.

[22]  Zhen-Qing Chen,et al.  Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation , 2010, 1011.3273.

[23]  Tomasz Jakubowski,et al.  Time-dependent gradient perturbations of fractional Laplacian , 2010 .

[24]  A. Dall'Aglio,et al.  Regularity and nonuniqueness results for parabolic problems arising in some physical models, having natural growth in the gradient , 2008 .

[25]  T. Gallouët,et al.  Non-linear elliptic and parabolic equations involving measure data , 1989 .

[26]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[27]  G. Vojta,et al.  Fractal Concepts in Surface Growth , 1996 .

[28]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[29]  W. A. Woyczyński Burgers-KPZ Turbulence , 1998 .

[30]  Strong Regularizing Effect of a Gradient Term in the Heat Equation with a Weight , 2013 .

[31]  A. Dall'Aglio,et al.  Global Existence for Nonlinear Parabolic Problems With Measure Data– Applications to Non-uniqueness for Parabolic Problems With Critical Gradient terms , 2011 .

[32]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[33]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[34]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[35]  F. Weissler,et al.  The local theory for viscous Hamilton–Jacobi equations in Lebesgue spaces , 2002 .

[36]  Juha Lehrbäck Weighted Hardy inequalities and the size of the boundary , 2008 .

[37]  Enrique Zuazua,et al.  Local regularity for fractional heat equations , 2017, 1704.07562.

[38]  N. Alaa Solutions faibles d'équations paraboliques quasilinéaires avec données initiales mesurés , 1996 .

[39]  B. Barrios,et al.  Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions , 2016, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[40]  M. Surnachev Density of smooth functions in weighted Sobolev spaces with variable exponent , 2014, Doklady Mathematics.

[41]  Ireneo Peral Alonso,et al.  Elliptic and Parabolic Equations Involving the Hardy-Leray Potential , 2021 .

[42]  G. Burton Sobolev Spaces , 2013 .

[43]  E. Valdinoci,et al.  Dislocation Dynamics in Crystals: A Macroscopic Theory in a Fractional Laplace Setting , 2013 .

[44]  李幼升,et al.  Ph , 1989 .

[45]  G. Grubb Regularity in $L_p$ Sobolev spaces of solutions to fractional heat equations , 2017, 1706.06058.

[46]  N. Phuc Morrey global bounds and quasilinear Riccati type equations below the natural exponent , 2014 .

[47]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[48]  Adimurthi,et al.  Positive solutions to a fractional equation with singular nonlinearity , 2017, Journal of Differential Equations.

[49]  N. Phuc,et al.  Quasilinear Riccati type equations with distributional data in Morrey space framework , 2016 .

[50]  Marcel Riesz,et al.  Integrales de Riemann-Liouville et Potentiels , 1988 .

[51]  Nicola Abatangelo Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian , 2013, 1310.3193.

[52]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[53]  B. Abdellaoui,et al.  Some existence and regularity results for porous media and fast diffusion equations with a gradient term , 2012, 1210.5062.

[54]  Strongly Nonlocal Dislocation Dynamics in Crystals , 2013, 1311.3549.

[55]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.