A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors

Summary Z-eigenvalues of tensors, especially extreme ones, are quite useful and are related to many problems, such as automatic control, quantum physics, and independent component analysis. For supersymmetric tensors, calculating the smallest/largest Z-eigenvalue is equivalent to solving a global minimization/maximization problem of a homogenous polynomial over the unit sphere. In this paper, we utilize the sequential subspace projection method (SSPM) to find extreme Z-eigenvalues and the corresponding Z-eigenvectors. The main idea of SSPM is to form a 2-dimensional subspace at the current point and then solve the original optimization problem in the subspace. SSPM benefits from the fact that the 2-dimensional subproblem can be solved by a direct method. Global convergence and linear convergence are established for supersymmetric tensors under certain assumptions. Preliminary numerical results over several testing problems show that SSPM is very promising. Besides, the globalization strategy of random phase can be easily incorporated into SSPM, which promotes the ability to find extreme Z-eigenvalues. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  Lixing Han An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors , 2012, 1203.5150.

[2]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.

[3]  Fei Wang,et al.  Z-eigenvalue methods for a global polynomial optimization problem , 2009, Math. Program..

[4]  Tamara G. Kolda,et al.  Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..

[5]  Boris N. Khoromskij,et al.  Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..

[6]  Liqun Qi,et al.  Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines , 2006, J. Symb. Comput..

[7]  Chen Ling,et al.  The Best Rank-1 Approximation of a Symmetric Tensor and Related Spherical Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..

[8]  L. Qi,et al.  The degree of the E-characteristic polynomial of an even order tensor , 2007 .

[9]  Yu-Hong Dai,et al.  Fast Algorithms for Projection on an Ellipsoid , 2006, SIAM J. Optim..

[10]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[11]  Kok Lay Teo,et al.  Multivariate Polynomial Minimization and Its Application in Signal Processing , 2003, J. Glob. Optim..

[12]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[13]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[14]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[15]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[16]  Fei Wang,et al.  An Eigenvalue Method for Testing Positive Definiteness of a Multivariate Form , 2008, IEEE Transactions on Automatic Control.

[17]  L. Qi Eigenvalues and invariants of tensors , 2007 .

[18]  L. Qi,et al.  Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..