A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors
暂无分享,去创建一个
[1] Lixing Han. An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors , 2012, 1203.5150.
[2] Jean-Franois Cardoso. High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.
[3] Fei Wang,et al. Z-eigenvalue methods for a global polynomial optimization problem , 2009, Math. Program..
[4] Tamara G. Kolda,et al. Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..
[5] Boris N. Khoromskij,et al. Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..
[6] Liqun Qi,et al. Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines , 2006, J. Symb. Comput..
[7] Chen Ling,et al. The Best Rank-1 Approximation of a Symmetric Tensor and Related Spherical Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..
[8] L. Qi,et al. The degree of the E-characteristic polynomial of an even order tensor , 2007 .
[9] Yu-Hong Dai,et al. Fast Algorithms for Projection on an Ellipsoid , 2006, SIAM J. Optim..
[10] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[11] Kok Lay Teo,et al. Multivariate Polynomial Minimization and Its Application in Signal Processing , 2003, J. Glob. Optim..
[12] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[13] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[14] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[15] P. Goldbart,et al. Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.
[16] Fei Wang,et al. An Eigenvalue Method for Testing Positive Definiteness of a Multivariate Form , 2008, IEEE Transactions on Automatic Control.
[17] L. Qi. Eigenvalues and invariants of tensors , 2007 .
[18] L. Qi,et al. Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..