Titanium with controllable pore fractions by thermoreversible gelcasting of TiH2

[1]  R. Misra,et al.  Biomaterials , 2008 .

[2]  N. Stanford,et al.  Deformation Twinning and the Hall–Petch Relation in Commercial Purity Ti , 2008 .

[3]  Yantao Shi,et al.  Copper base materials prepared by gel-casting process , 2008 .

[4]  Yan Li,et al.  Gelcasting of 316L stainless steel , 2007 .

[5]  Ziya Esen,et al.  Processing of titanium foams using magnesium spacer particles , 2007 .

[6]  D. Dong,et al.  Fabrication of tubular NiO/YSZ anode-support of solid oxide fuel cell by gelcasting , 2007 .

[7]  W. Burghardt,et al.  Self-Assembly and Stress Relaxation in Acrylic Triblock Copolymer Gels , 2007 .

[8]  I. Ganesh,et al.  An Aqueous Gelcasting Process for Sintered Silicon Carbide Ceramics , 2006 .

[9]  A. Mortensen,et al.  Uniaxial deformation of microcellular metals , 2006 .

[10]  J. Walter,et al.  Porous titanium foil by tape casting technique , 2006 .

[11]  D. Dunand,et al.  Effect of initial preform porosity on solid-state foaming of titanium , 2006 .

[12]  Abhay Pandit,et al.  Fabrication methods of porous metals for use in orthopaedic applications. , 2006, Biomaterials.

[13]  T. Ebel,et al.  Advanced TiAl6Nb7 Bone Screw Implant Fabricated by Metal Injection Moulding , 2006 .

[14]  J. Banhart,et al.  Modification of titanium hydride for improved aluminium foam manufacture , 2006 .

[15]  M. Bram,et al.  Green strength of powder compacts provided for production of highly porous titanium parts , 2005 .

[16]  H. Sandim,et al.  Kinetics of thermal decomposition of titanium hydride powder using in situ high-temperature X-ray diffraction (HTXRD) , 2005 .

[17]  G. Saupe,et al.  Evaluation of a new porous titanium-niobium mixed oxide for photocatalytic water decontamination , 2005 .

[18]  K. Weil,et al.  Use of a Naphthalene-Based Binder in Injection Molding Net-Shape Titanium Components of Controlled Porosity , 2005 .

[19]  C. Leyens,et al.  Titanium and titanium alloys : fundamentals and applications , 2005 .

[20]  S. D. Nunn,et al.  Development of Low‐Toxicity Gelcasting Systems , 2005 .

[21]  J. K. Montgomery,et al.  Thermoreversible Gelcasting: A Novel Ceramic Processing Technique , 2004 .

[22]  Y. Thomas,et al.  Production of Metallic Foams Having Open Porosity Using a Powder Metallurgy Approach , 2004 .

[23]  L Catherine Brinson,et al.  Mechanics considerations for microporous titanium as an orthopedic implant material. , 2004, Journal of biomedical materials research. Part A.

[24]  David C. Dunand,et al.  Processing of Titanium Foams , 2004 .

[25]  Hans Peter Buchkremer,et al.  Study of production route for titanium parts combining very high porosity and complex shape , 2004 .

[26]  Naoyuki Nomura,et al.  Mechanical properties of porous titanium compacts prepared by powder sintering , 2003 .

[27]  Tongxi Yu,et al.  Energy Absorption of Structures and Materials , 2003 .

[28]  J. K. Montgomery,et al.  A thermoreversible gelcasting technique for ceramic laminates , 2003 .

[29]  P. L. Drzal,et al.  Origins of mechanical strength and elasticity in thermally reversible, acrylic triblock copolymer gels , 2003 .

[30]  A. Kennedy The effect of TiH2 heat treatment on gas release and foaming in Al–TiH2 preforms , 2002 .

[31]  M. Mabuchi,et al.  Processing and mechanical properties of autogenous titanium implant materials , 2002, Journal of materials science. Materials in medicine.

[32]  P. L. Drzal,et al.  Elasticity, fracture and thermoreversible gelation of highly filled physical gels⋆ , 2002, The European physical journal. E, Soft matter.

[33]  A. Gonçalves Metallic powder injection molding using low pressure , 2001 .

[34]  D. Dunand,et al.  Solid-state foaming of titanium by superplastic expansion of argon-filled pores , 2001 .

[35]  T. J. Kim,et al.  Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants , 2001, Journal of materials science. Materials in medicine.

[36]  O. Pohler,et al.  Unalloyed titanium for implants in bone surgery. , 2000, Injury.

[37]  Hans Peter Buchkremer,et al.  High-porosity titanium, stainless steel and superalloy parts , 2000 .

[38]  L. Bergström,et al.  Temperature induced gelation of concentrated ceramic suspensions: rheological properties , 1999 .

[39]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[40]  E. Collings,et al.  Materials Properties Handbook: Titanium Alloys , 1994 .

[41]  C. Tanford Macromolecules , 1994, Nature.

[42]  M. Janney,et al.  Gelcasting of Alumina , 1991 .

[43]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[44]  G. P. Tandon,et al.  Elastic moduli for a class of porous materials , 1989 .

[45]  M. Donachie Titanium: A Technical Guide , 1988 .

[46]  Charlie C. Chen Recent Advancement in Titanium Near-Net-Shape Technology , 1982 .

[47]  D. Dunand,et al.  Directionally freeze-cast titanium foam with aligned, elongated pores , 2008 .

[48]  T. Tamura,et al.  Fabrication of textured ferroelectric ceramics by magnetic alignment via gelcasting , 2007 .

[49]  K. Weil,et al.  Powder Injection Molding of Titanium Components , 2005 .

[50]  佟建国,et al.  《J Univ Sci Technol Beijing》的策划与运作 , 2004 .

[51]  R. Ricceri,et al.  P/M processing of cellular titanium , 2003 .

[52]  J. Banhart Manufacture, characterisation and application of cellular metals and metal foams , 2001 .

[53]  Marcus Textor,et al.  Titanium in Medicine : material science, surface science, engineering, biological responses and medical applications , 2001 .

[54]  R. A. Strehlow,et al.  Gelcasting : a new ceramic forming process , 1991 .

[55]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[56]  H. Conrad Effect of interstitial solutes on the strength and ductility of titanium , 1981 .