Recent advancements in chemometrics for smart sensors.

1 General trends 2 Novel instrumentations utilizing chemometrics 2.1 Optical computation 2.2 Hyperspectral imaging 2.3 Surface plasmon resonance 2.4 Excitation-emission matrix spectroscopy 2.5 Optical derivative spectroscopy 3 Novel numerical techniques for fast and robust chemometrics 3.1 New approaches for spectroscopic multivariate curve resolution 3.2 Accelerating chemometric computations of large data sets 3.3 Fine-tuning of PCR calibration models 3.4 Detection of outliers 3.5 Correction of baseline drifts 3.6 Detection and correction of uncalibrated spectral features 4 Conclusions and upcoming trends

[1]  Sheldon Landsberger,et al.  Atmospheric aerosol over Finnish Arctic: source analysis by the multilinear engine and the potential source contribution function , 2003 .

[2]  Frank Vogt,et al.  Dynamic determination of the dimension of PCA calibration models using F‐statistics , 2003 .

[3]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[4]  Peter de B. Harrington,et al.  SIMPLISMA applied to two-dimensional wavelet compressed ion mobility spectrometry data , 2003 .

[5]  Randy J. Pell,et al.  Multiple outlier detection for multivariate calibration using robust statistical techniques , 2000 .

[6]  R. Leardi Genetic algorithms in chemometrics and chemistry: a review , 2001 .

[7]  F. Vogt,et al.  Optical UV Derivative Spectroscopy for Monitoring Gaseous Emissions , 1999 .

[8]  Leo H. Chiang,et al.  Exploring process data with the use of robust outlier detection algorithms , 2003 .

[9]  R. Bro,et al.  Practical aspects of PARAFAC modeling of fluorescence excitation‐emission data , 2003 .

[10]  Frank Vogt,et al.  Fault‐tolerant spectroscopic data evaluation based on extended principal component regression correcting for spectral drifts and uncalibrated spectral features , 2003 .

[11]  William H. Press,et al.  Numerical recipes in C , 2002 .

[12]  Michael L. Myrick,et al.  Single-Measurement Excitation/Emission Matrix Spectrofluorometer for Determination of Hydrocarbons in Ocean Water. 1. Instrumentation and Background Correction , 1996 .

[13]  Desire L. Massart,et al.  Wavelet packet transform applied to a set of signals: A new approach to the best-basis selection , 1997 .

[14]  C. B. Lucasius,et al.  Understanding and using genetic algorithms Part 2. Representation, configuration and hybridization , 1994 .

[15]  Qing-Song Xu,et al.  Robust principal components regression based on principal sensitivity vectors , 2003 .

[16]  Frank Vogt,et al.  Fast principal component analysis of large data sets based on information extraction , 2002 .

[17]  Desire L. Massart,et al.  Wavelets — something for analytical chemistry? , 1997 .

[18]  K. Booksh,et al.  Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic aromatic hydrocarbons , 1999 .

[19]  E. V. Thomas,et al.  Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information , 1988 .

[20]  Desire L. Massart,et al.  Noise suppression and signal compression using the wavelet packet transform , 1997 .

[21]  Weixiang Zhao,et al.  Source identification of volatile organic compounds in Houston, Texas. , 2004, Environmental science & technology.

[22]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[23]  David M. Skapura,et al.  Neural networks - algorithms, applications, and programming techniques , 1991, Computation and neural systems series.

[24]  R. Bro,et al.  A fast non‐negativity‐constrained least squares algorithm , 1997 .

[25]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[26]  Richard G. Brereton,et al.  Support vector machines for the discrimination of analytical chemical data: application to the determination of tablet production by pyrolysis-gas chromatography-mass spectrometry , 2004 .

[27]  Rasmus Bro,et al.  Recent developments in CANDECOMP/PARAFAC algorithms: a critical review , 2003 .

[28]  Lalji Dixit,et al.  Quantitative Analysis by Derivative Electronic Spectroscopy , 1985 .

[29]  Paul J. Gemperline,et al.  A single-element all-optical approach to chemometric prediction , 2002 .

[30]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[31]  Günter Gauglitz,et al.  Genetic algorithms and neural networks for the quantitative analysis of ternary mixtures using surface plasmon resonance , 2003 .

[32]  Karl S. Booksh,et al.  Tuning Dynamic Range and Sensitivity of White-Light, Multimode, Fiber-Optic Surface Plasmon Resonance Sensors , 1999 .

[33]  M. Hubert,et al.  A robust PCR method for high‐dimensional regressors , 2003 .

[34]  P. Gemperline,et al.  Advantages of soft versus hard constraints in self-modeling curve resolution problems. Alternating least squares with penalty functions. , 2003, Analytical chemistry.

[35]  S. Morgan,et al.  Outlier detection in multivariate analytical chemical data. , 1998, Analytical chemistry.

[36]  Peter de B. Harrington,et al.  Real-time two-dimensional wavelet compression and its application to real-time modeling of ion mobility data , 2003 .

[37]  K. Booksh,et al.  Application of PARAFAC for calibration with excitation–emission matrix fluorescence spectra of three classes of environmental pollutants , 2000 .

[38]  D. Massart,et al.  Application of Wavelet Packet Transform in Pattern Recognition of Near-IR Data , 1996 .

[39]  Boiana O. Budevska,et al.  Application of Multivariate Curve Resolution for Analysis of FT-IR Microspectroscopic Images of in Situ Plant Tissue , 2003, Applied spectroscopy.

[40]  Frank Vogt,et al.  Introduction and application of secured principal component regression for analysis of uncalibrated spectral features in optical spectroscopy and chemical sensing. , 2003, Analytical chemistry.

[41]  Philip K. Hopke,et al.  New convergence criterion for multi-variable curve resolution , 2003 .

[42]  Chieu D. Tran,et al.  Infrared Multispectral Imaging: Principles and Instrumentation , 2003 .

[43]  K. Zuzak,et al.  Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion. , 2002, Analytical chemistry.

[44]  Emil W. Ciurczak,et al.  Handbook of Near-Infrared Analysis , 1992 .

[45]  Karl S. Booksh,et al.  Weighted parallel factor analysis for calibration of HPLC-UV/Vis spectrometers in the presence of Beer's law deviations , 1999 .

[46]  K. Booksh,et al.  Mitigation of Rayleigh and Raman spectral interferences in multiway calibration of excitation-emission matrix fluorescence spectra. , 2000, Analytical chemistry.

[47]  L A Todd,et al.  Experimental evaluation of an environmental CAT scanning system for mapping chemicals in air in real-time. , 2001, Applied occupational and environmental hygiene.

[48]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[49]  Michael L. Myrick,et al.  Single-Measurement Excitation/Emission Matrix Spectrofluorometer for Determination of Hydrocarbons in Ocean Water. 2. Calibration and Quantitation of Naphthalene and Styrene , 1996 .

[50]  Barry M Wise,et al.  Error Analysis for Estimation of Trace Vapor Concentration Pathlength in Stack Plumes , 2003, Applied spectroscopy.

[51]  J. Mandel Use of the Singular Value Decomposition in Regression Analysis , 1982 .

[52]  Paul J. Gemperline,et al.  Nonlinear Optimization Algorithm for Multivariate Optical Element Design , 2002 .

[53]  Frank Vogt,et al.  Secured PCR (sPCR) for detection and correction of PCR calibration model failures induced by uncalibrated spectral features , 2003 .

[54]  David M. Haaland,et al.  Synthetic Multivariate Models to Accommodate Unmodeled Interfering Spectral Components during Quantitative Spectral Analyses , 2000 .

[55]  Edmund R. Malinowski,et al.  Factor Analysis in Chemistry , 1980 .

[56]  M L Myrick,et al.  Spectral tolerance determination for multivariate optical element design , 2001, Fresenius' journal of analytical chemistry.

[57]  Frank Vogt,et al.  Erratum to “A UV spectroscopic method for monitoring aromatic hydrocarbons dissolved in water” [Analytica Chimica Acta 422 (2000) 187–198] , 2001 .

[58]  Frank Vogt,et al.  Correction of background drifts in optical spectra by means of “pseudo principal components” , 2000 .

[59]  Sean J Hart,et al.  Light emitting diode excitation emission matrix fluorescence spectroscopy. , 2002, The Analyst.

[60]  A. J. Moores,et al.  Genetic algorithms for spectral pattern recognition , 2002 .

[61]  Christopher D. Brown,et al.  Derivative Preprocessing and Optimal Corrections for Baseline Drift in Multivariate Calibration , 2000 .

[62]  Desire L. Massart,et al.  Methods for outlier detection in prediction , 2002 .

[63]  Frank Vogt,et al.  A UV spectroscopic method for monitoring aromatic hydrocarbons dissolved in water , 2000 .

[64]  Karl S. Booksh,et al.  Selecting significant factors by the noise addition method in principal component analysis , 2001 .

[65]  Paul J. Gemperline,et al.  Design and Testing of a Multivariate Optical Element: The First Demonstration of Multivariate Optical Computing for Predictive Spectroscopy , 2001 .

[66]  Karl S. Booksh,et al.  OPTICAL REGRESSION : A METHOD FOR IMPROVING QUANTITATIVE PRECISION OF MULTIVARIATE PREDICTION WITH SINGLE CHANNEL SPECTROMETERS , 1999 .

[67]  Peihua Qtu Multivariate Image Analysis , 2000, Technometrics.

[68]  Paul J. Gemperline,et al.  Wavelength selection and optimization of pattern recognition methods using the genetic algorithm , 2000 .

[69]  P. Hopke,et al.  Comparison of Positive Matrix Factorization and Multilinear Engine for the source apportionment of particulate pollutants , 2003 .

[70]  Günter Gauglitz,et al.  Growing neural networks for a multivariate calibration and variable selection of time-resolved measurements , 2003 .

[71]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[72]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[73]  Barry M. Wise,et al.  Estimation of trace vapor concentration-pathlength in plumes for remote sensing applications from hyperspectral images , 2003 .

[74]  Knut Kvaal,et al.  Mapping Lipid Oxidation in Chicken Meat by Multispectral Imaging of Autofluorescence , 2000 .

[75]  L A Todd Mapping the air in real-time to visualize the flow of gases and vapors: occupational and environmental applications. , 2000, Applied occupational and environmental hygiene.

[76]  P. Hopke,et al.  Application of modified alternating least squares regression to spectroscopic image analysis , 2003 .