Multiparticle collision dynamics: GPU accelerated particle-based mesoscale hydrodynamic simulations

Abstract The Compute Unified Device Architecture (CUDA) programming language on a graphics processing unit (GPU) is exploited to develop a GPU-based simulation program for the multiparticle collision dynamics (MPC) approach, a particle-based mesoscale hydrodynamic simulation technique. The coarse-grained description of the fluid dynamics in terms of ballistic motion and local stochastic interactions of particles renders MPC inherently highly parallel. We achieve a 1–2 orders of magnitude performance gain over a comparable CPU-core version of the algorithm, depending on the implementation (single threaded or OpenMP). Various aspects of the implementation are discussed in the context of an optimized performance.

[1]  T. A. Bray,et al.  A Convenient Method for Generating Normal Variables , 1964 .

[2]  Gerhard Gompper,et al.  Flow generation by rotating colloids in planar microchannels , 2010, 1102.3054.

[3]  A. Malevanets,et al.  Mesoscopic model for solvent dynamics , 1999 .

[4]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[5]  Jeremy B Lechman,et al.  Mesoscale hydrodynamics via stochastic rotation dynamics: comparison with Lennard-Jones fluid. , 2010, The Journal of chemical physics.

[6]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[7]  Felix Höfling,et al.  Highly accelerated simulations of glassy dynamics using GPUs: Caveats on limited floating-point precision , 2009, Comput. Phys. Commun..

[8]  L. Forró,et al.  Resonances arising from hydrodynamic memory in Brownian motion , 2011, Nature.

[9]  H. Löwen Colloidal soft matter under external control , 2001 .

[10]  Gerhard Gompper,et al.  Hydrodynamic correlations in multiparticle collision dynamics fluids. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  R. Winkler,et al.  Hydrodynamic screening of star polymers in shear flow , 2007, The European physical journal. E, Soft matter.

[12]  Gerhard Gompper,et al.  Synchronization and bundling of anchored bacterial flagella , 2012 .

[13]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[14]  George Marsaglia,et al.  Random Number Generators , 2003 .

[15]  Weiguo Liu,et al.  Molecular Dynamics Simulations on Commodity GPUs with CUDA , 2007, HiPC.

[16]  Francis J. Alexander,et al.  The direct simulation Monte Carlo method , 1997 .

[17]  R. Winkler,et al.  Dynamics of polymers in a particle-based mesoscopic solvent. , 2005, The Journal of chemical physics.

[18]  H. Herrmann,et al.  Simulation of claylike colloids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Gerhard Gompper,et al.  Self-propelled rods near surfaces , 2009, 0901.2041.

[20]  Thomas Ihle,et al.  Consistent particle-based algorithm with a non-ideal equation of state , 2006 .

[21]  T Ihle,et al.  Stochastic rotation dynamics. I. Formalism, Galilean invariance, and Green-Kubo relations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Raymond Kapral,et al.  Chemically powered nanodimers. , 2007, Physical review letters.

[23]  Gerhard Gompper,et al.  Semidilute solutions of ultra-soft colloids under shear flow , 2012 .

[24]  Hiroshi Noguchi,et al.  Relevance of angular momentum conservation in mesoscale hydrodynamics simulations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[26]  Hiroshi Noguchi,et al.  Fluid vesicles with viscous membranes in shear flow. , 2004, Physical review letters.

[27]  T Ihle,et al.  Stochastic rotation dynamics. II. Transport coefficients, numerics, and long-time tails. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  J. F. Ryder,et al.  Modeling microscopic swimmers at low Reynolds number. , 2007, The Journal of chemical physics.

[29]  Gerhard Gompper,et al.  Direct observation of hydrodynamic instabilities in a driven non-uniform colloidal dispersion , 2008, 0810.1258.

[30]  R. Kapral Multiparticle Collision Dynamics: Simulation of Complex Systems on Mesoscales , 2008 .

[31]  Gerhard Gompper,et al.  Migration of semiflexible polymers in microcapillary flow , 2010, 1006.4485.

[32]  Dong Xu,et al.  Advancements in Molecular Dynamics Simulations of Biomolecules on Graphical Processing Units , 2010 .

[33]  J. Yeomans,et al.  Modeling a tethered polymer in Poiseuille flow. , 2005, The Journal of chemical physics.

[34]  Hiroshi Noguchi,et al.  Particle-based mesoscale hydrodynamic techniques , 2006, cond-mat/0610890.

[35]  Raymond Kapral,et al.  Friction and diffusion of a Brownian particle in a mesoscopic solvent. , 2004, The Journal of chemical physics.

[36]  Hubert Nguyen,et al.  GPU Gems 3 , 2007 .

[37]  Hao Wu,et al.  GPU Accelerated Dissipative Particle Dynamics with Parallel Cell-list Updating , 2011 .

[38]  T Ihle,et al.  Equilibrium calculation of transport coefficients for a fluid-particle model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[40]  Gerhard Gompper,et al.  Low-Reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics , 2004 .

[41]  Gerhard Gompper,et al.  Semidilute Polymer Solutions at Equilibrium and under Shear Flow , 2010, 1103.3573.

[42]  J. F. Ryder,et al.  Transport coefficients of a mesoscopic fluid dynamics model , 2003, cond-mat/0302451.

[43]  J T Padding,et al.  Hydrodynamic and brownian fluctuations in sedimenting suspensions. , 2004, Physical review letters.

[44]  Ye Zhao,et al.  Lattice Boltzmann based PDE solver on the GPU , 2008, The Visual Computer.

[45]  C M Pooley,et al.  Kinetic theory derivation of the transport coefficients of stochastic rotation dynamics. , 2005, The journal of physical chemistry. B.

[46]  Marisol Ripoll,et al.  Simulations of thermophoretic nanoswimmers. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  R. Winkler,et al.  Backtracking of colloids: a multiparticle collision dynamics simulation study. , 2011, The journal of physical chemistry. B.

[48]  Gerhard Gompper,et al.  Nonequilibrium forces between dragged ultrasoft colloids. , 2011, Physical review letters.

[49]  T. Ihle,et al.  Erratum: Multi-particle collision dynamics: Flow around a circular and a square cylinder , 2001, cond-mat/0110148.

[50]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[51]  Godehard Sutmann,et al.  Hydrodynamic fluctuations in thermostatted multiparticle collision dynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Roland G Winkler,et al.  Stress tensors of multiparticle collision dynamics fluids. , 2008, The Journal of chemical physics.

[53]  A. Malevanets,et al.  Solute molecular dynamics in a mesoscale solvent , 2000 .

[54]  R. Winkler,et al.  Attractive colloidal rods in shear flow. , 2008, Physical review letters.

[55]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[56]  Weiguo Liu,et al.  Accelerating molecular dynamics simulations using Graphics Processing Units with CUDA , 2008, Comput. Phys. Commun..

[57]  Masao Doi,et al.  Onsager’s variational principle in soft matter , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[58]  Yunfei Chen,et al.  GPU accelerated molecular dynamics simulation of thermal conductivities , 2007, J. Comput. Phys..

[59]  J. F. Ryder,et al.  Shear thinning in dilute polymer solutions. , 2006, The Journal of chemical physics.

[60]  Massimo Bernaschi,et al.  A flexible high-performance Lattice Boltzmann GPU code for the simulations of fluid flows in complex geometries , 2010 .

[61]  Hirotada Ohashi,et al.  Development of a Simulation Model for Solid Objects Suspended in a Fluctuating Fluid , 2002 .

[62]  Thomas Ihle,et al.  Mesoscopic model for the fluctuating hydrodynamics of binary and ternary mixtures , 2007, 0707.2774.

[63]  R. Winkler,et al.  Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids , 2008, 0808.2157.

[64]  J. Dunkel,et al.  CUDA simulations of active dumbbell suspensions , 2010, 1004.1932.

[65]  Wolfgang Paul,et al.  GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model , 2009, J. Comput. Phys..

[66]  Gerhard Gompper,et al.  Mesoscale simulations of hydrodynamic squirmer interactions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  H. Noguchi,et al.  Shape transitions of fluid vesicles and red blood cells in capillary flows. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Gerhard Gompper,et al.  Multiparticle collision dynamics modeling of viscoelastic fluids. , 2008, The Journal of chemical physics.

[69]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[70]  R. Winkler,et al.  Star polymers in shear flow. , 2006, Physical review letters.

[71]  A. Arnold,et al.  Harvesting graphics power for MD simulations , 2007, 0709.3225.

[72]  G. Gompper,et al.  Hydrodynamics of sperm cells near surfaces. , 2010, Biophysical journal.

[73]  J. M. Yeomans,et al.  Dynamics of short polymer chains in solution , 2000 .

[74]  Gerhard Gompper,et al.  Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow. , 2011, The Journal of chemical physics.

[75]  Erik Luijten,et al.  Fluid–solid boundary conditions for multiparticle collision dynamics , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[76]  Roland G Winkler,et al.  Multiparticle collision dynamics simulations of viscoelastic fluids: shear-thinning Gaussian dumbbells. , 2013, The Journal of chemical physics.

[77]  T Ihle,et al.  Dynamic correlations in stochastic rotation dynamics. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  Roland G. Winkler,et al.  Polyelectrolyte electrophoresis: Field effects and hydrodynamic interactions , 2008 .

[79]  Arash Nikoubashman,et al.  Flow-induced polymer translocation through narrow and patterned channels. , 2010, The Journal of chemical physics.

[80]  J. McWhirter,et al.  Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries , 2009, Proceedings of the National Academy of Sciences.

[81]  Gerhard Gompper,et al.  Non-equilibrium relaxation and tumbling times of polymers in semidilute solution , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[82]  T. Ihle,et al.  Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  Ronald G. Larson,et al.  How accurate are stochastic rotation dynamics simulations of polymer dynamics , 2013 .

[84]  Gerhard Gompper,et al.  Rod-like colloids and polymers in shear flow: a multi-particle-collision dynamics study , 2004 .

[85]  G. Gompper,et al.  Mesoscopic solvent simulations: multiparticle-collision dynamics of three-dimensional flows. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Michael Bachmann,et al.  Massively parallelized replica-exchange simulations of polymers on GPUs , 2011, Comput. Phys. Commun..

[87]  G. Gompper,et al.  Mesoscale simulations of polymer dynamics in microchannel flows , 2007, 0709.3822.

[88]  J. Padding,et al.  Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.