Tensor Decomposition via Joint Matrix Schur Decomposition

We describe an approach to tensor decomposition that involves extracting a set of observable matrices from the tensor and applying an approximate joint Schur decomposition on those matrices, and we establish the corresponding first-order perturbation bounds. We develop a novel iterative Gauss-Newton algorithm for joint matrix Schur decomposition, which minimizes a nonconvex objective over the manifold of orthogonal matrices, and which is guaranteed to converge to a global optimum under certain conditions. We empirically demonstrate that our algorithm is faster and at least as accurate and robust than state-of-the-art algorithms for this problem.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  Nikos Vlassis,et al.  Approximate Joint Matrix Triangularization , 2016, ArXiv.

[3]  Kamyar Azizzadenesheli,et al.  Reinforcement Learning of POMDPs using Spectral Methods , 2016, COLT.

[4]  Percy Liang,et al.  Tensor Factorization via Matrix Factorization , 2015, AISTATS.

[5]  Santosh S. Vempala,et al.  Max vs Min: Tensor Decomposition and ICA with nearly Linear Sample Complexity , 2014, COLT.

[6]  Andrea Montanari,et al.  A statistical model for tensor PCA , 2014, NIPS.

[7]  Xi Chen,et al.  Spectral Methods Meet EM: A Provably Optimal Algorithm for Crowdsourcing , 2014, J. Mach. Learn. Res..

[8]  Pierre Comon,et al.  Tensors : A brief introduction , 2014, IEEE Signal Processing Magazine.

[9]  Le Song,et al.  Nonparametric Estimation of Multi-View Latent Variable Models , 2013, ICML.

[10]  Anima Anandkumar,et al.  A tensor approach to learning mixed membership community models , 2013, J. Mach. Learn. Res..

[11]  Sham M. Kakade,et al.  Learning mixtures of spherical gaussians: moment methods and spectral decompositions , 2012, ITCS '13.

[12]  Anima Anandkumar,et al.  Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..

[13]  Antoine Souloumiac,et al.  Joint diagonalization: Is non-orthogonal always preferable to orthogonal? , 2009, 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[14]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[15]  Bijan Afsari,et al.  Sensitivity Analysis for the Problem of Matrix Joint Diagonalization , 2008, SIAM J. Matrix Anal. Appl..

[16]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[17]  Elchanan Mossel,et al.  Learning nonsingular phylogenies and hidden Markov models , 2005, STOC '05.

[18]  Joos Vandewalle,et al.  Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..

[19]  Bijan Afsari,et al.  Some Gradient Based Joint Diagonalization Methods for ICA , 2004, ICA.

[20]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[21]  Karim Abed-Meraim,et al.  A least-squares approach to joint Schur decomposition , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[22]  Josef A. Nossek,et al.  Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems , 1998, IEEE Trans. Signal Process..

[23]  Joseph T. Chang,et al.  Full reconstruction of Markov models on evolutionary trees: identifiability and consistency. , 1996, Mathematical biosciences.

[24]  Antoine Souloumiac,et al.  Jacobi Angles for Simultaneous Diagonalization , 1996, SIAM J. Matrix Anal. Appl..

[25]  Ji-guang Sun Perturbation Bounds for the Generalized Schur Decomposition , 1995, SIAM J. Matrix Anal. Appl..

[26]  Mihail M. Konstantinov,et al.  Nonlocal Perturbation Analysis of the Schur System of a Matrix , 1994, SIAM J. Matrix Anal. Appl..

[27]  Jean-Francois Cardoso,et al.  Perturbation of joint diagonalizers , 1994 .

[28]  S. Leurgans,et al.  A Decomposition for Three-Way Arrays , 1993, SIAM J. Matrix Anal. Appl..

[29]  Jean-Francois Cardoso,et al.  Super-symmetric decomposition of the fourth-order cumulant tensor. Blind identification of more sources than sensors , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[30]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[31]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .