Exploring the Magnetoelectric Coupling at the Composite Interfaces of FE/FM/FE Heterostructures

Multiferroic materials have attracted considerable attention as possible candidates for a wide variety of future microelectronic and memory devices, although robust magnetoelectric (ME) coupling between electric and magnetic orders at room temperature still remains difficult to achieve. In order to obtain robust ME coupling at room temperature, we studied the Pb(Fe0.5Nb0.5)O3/Ni0.65Zn0.35Fe2O4/Pb(Fe0.5Nb0.5)O3 (PFN/NZFO/PFN) trilayer structure as a representative FE/FM/FE system. We report the ferroelectric, magnetic and ME properties of PFN/NZFO/PFN trilayer nanoscale heterostructure having dimensions 70/20/70 nm, at room temperature. The presence of only (00l) reflection of PFN and NZFO in the X-ray diffraction (XRD) patterns and electron diffraction patterns in Transmission Electron Microscopy (TEM) confirm the epitaxial growth of multilayer heterostructure. The distribution of the ferroelectric loop area in a wide area has been studied, suggesting that spatial variability of ferroelectric switching behavior is low, and film growth is of high quality. The ferroelectric and magnetic phase transitions of these heterostructures have been found at ~575 K and ~650 K, respectively which are well above room temperature. These nanostructures exhibit low loss tangent, large saturation polarization (Ps ~ 38 µC/cm2) and magnetization (Ms ~ 48 emu/cm3) with strong ME coupling at room temperature revealing them as potential candidates for nanoscale multifunctional and spintronics device applications.

[1]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[2]  K. Uchino,et al.  Critical exponents of the dielectric constants in diffused-phase-transition crystals , 1982 .

[3]  A. Bienkowski,et al.  Magnetostrictive properties of Cox(NiZn)1−xFe2O4ferrites in the case of small changes of iron content , 1984 .

[4]  T. S. Rao,et al.  Magnetostriction of Ni‐Zn and Co‐Zn ferrites , 1985 .

[5]  R. G. West,et al.  Magnetic and dielectric properties of the spinel ferrite system Ni0.65Zn0.35Fe2−xMnxO4 , 1987 .

[6]  Rustum Roy,et al.  Studies on high‐density nickel zinc ferrite and its magnetic properties using novel hydrazine precursors , 1988 .

[7]  K. Abe,et al.  Modification of ferroelectricity in heteroepitaxial (Ba, Sr)TiO3 films for non-volatile memory applications , 1998 .

[8]  H. Ohno,et al.  Electric-field control of ferromagnetism , 2000, Nature.

[9]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[10]  Gopalan Srinivasan,et al.  Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides , 2001 .

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  J. Verbeeck,et al.  Structure and properties of artificial [(La_{0.7}Sr_{0.3}MnO_{3})_{m}(SrTiO_{3})_{n}]_{15} superlattices on (001)SrTiO_{3} , 2003 .

[13]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[14]  Zu-liang Liu,et al.  Magnetoelectric coupling in ferroelectromagnet Pb(Fe1/2Nb1/2)O-3 single crystals , 2004 .

[15]  A. Tagantsev,et al.  Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.

[16]  M. Alexe,et al.  High-resolution electron energy-loss spectroscopy of BaTiO3/SrTiO3 multilayers , 2005 .

[17]  M. Alexe,et al.  High-resolution electron energy-loss spectroscopy of Ba Ti O 3∕ Sr Ti O 3 multilayers , 2005 .

[18]  M. Fiebig Revival of the magnetoelectric effect , 2005 .

[19]  M. P. Singh,et al.  The single-phase multiferroic oxides: from bulk to thin film , 2005 .

[20]  James F. Scott,et al.  Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics , 2006 .

[21]  D. Viehland,et al.  Multiferroic epitaxial Pb(Fe1∕2Nb1∕2)O3 thin films: A relaxor ferroelectric/weak ferromagnet with a variable structure , 2006 .

[22]  D. Bochenek,et al.  PbFe1=2Nb1=2O3 CERAMICS AS A BASE MATERIAL FOR ELECTROMECHANICAL TRANSDUCERS , 2006 .

[23]  J. Prieto,et al.  Giant sharp magnetoelectric switching in multiferroic epitaxial La_{0.67}Sr_{0.33}MnO_3 on BaTiO_3 , 2006, cond-mat/0609209.

[24]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[25]  A. Manivannan,et al.  Dielectric and magnetic properties of sol-gel-derived lead iron niobate ceramics , 2006 .

[26]  J. Prieto,et al.  Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. , 2007, Nature materials.

[27]  Evidence for monoclinic crystal structure and negative thermal expansion below magnetic transition temperature in Pb(Fe1/2Nb1/2)O3 , 2007, 0706.0647.

[28]  X. Lu,et al.  Critical phase transition temperatures of 1–3 type multiferroic composite thin films , 2007 .

[29]  H. M. Jang,et al.  Magnetoelectric coupling of [00l]-oriented Pb(Zr0.4Ti0.6)O3–Ni0.8Zn0.2Fe2O4 multilayered thin films , 2007 .

[30]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[31]  Yuanhua Lin,et al.  Enhancement in magnetoelectric response in CoFe2O4–BaTiO3 heterostructure , 2008 .

[32]  Yuanhua Lin,et al.  Magnetoelectric coupling in BaTiO3/(NiFe2O4/BaTiO3)n(n=1,2,3,4) multilayered thin films , 2009 .

[33]  V. Shvartsman,et al.  Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe 0.5 Nb 0.5 O3. , 2010, Physical review letters.

[34]  T. Sun,et al.  Sol-gel-derived epitaxial nanocomposite thin films with large sharp magnetoelectric effect. , 2010, ACS nano.

[35]  R. Ramesh,et al.  Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures , 2010, Advanced materials.

[36]  Ce-Wen Nan,et al.  Multiferroic magnetoelectric composite nanostructures , 2010 .

[37]  C. Nan,et al.  Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films , 2011, Advanced materials.

[38]  Q. Ramasse,et al.  Microstructural analysis of interfaces in a ferromagnetic-multiferroic epitaxial heterostructure , 2011 .

[39]  S. Priya,et al.  Phonon anomalies and phonon-spin coupling in oriented PbFe 0.5 Nb 0.5 O 3 thin films , 2011 .

[40]  C. Nan,et al.  Size-dependent electric voltage controlled magnetic anisotropy in multiferroic heterostructures: Interface-charge and strain comediated magnetoelectric coupling , 2010, 1012.0088.

[41]  R. Krishnaiah,et al.  Observation of direct and indirect magnetoelectricity in lead free ferroelectric (Na0.5Bi0.5TiO3)–magnetostrictive (CoFe2O4) particulate composite , 2012 .

[42]  G. Srinivasan,et al.  Observation of strong magnetoelectric effects in Ba0.7Sr0.3TiO3/La0.7Sr0.3MnO3 thin film heterostructures , 2012 .

[43]  L. Bellaiche,et al.  Giant direct magnetoelectric effect in strained multiferroic heterostructures , 2012, 1203.5926.

[44]  C N R Rao,et al.  Multiferroic and Magnetoelectric Oxides: The Emerging Scenario. , 2012, The journal of physical chemistry letters.

[45]  F. Fang,et al.  Magnetoelectric coupling of laminated composites under combined thermal and magnetic loadings , 2012 .

[46]  Zhiwei Hu,et al.  Strong magnetic enhancement in self-assembled multiferroic-ferrimagnetic nanostructures. , 2013, Nanoscale.

[47]  Venkata Sreenivas Puli,et al.  Investigations on electrical and magnetic properties of multiferroic [(1−x)Pb(Fe0.5Nb0.5)O3−xNi0.65Zn0.35Fe2O4] composites , 2013 .

[48]  Nicola A. Spaldin,et al.  Functional Ion Defects in Transition Metal Oxides , 2013, Science.

[49]  Sergei V. Kalinin,et al.  Epitaxial Bi5Ti3FeO15-CoFe2O4 pillar-matrix multiferroic nanostructures. , 2013, ACS nano.

[50]  Venkata Sreenivas Puli,et al.  Room temperature multiferroic properties of Pb(Fe0.5Nb0.5)O3–Co0.65Zn0.35Fe2O4 composites , 2013 .

[51]  Zhenxiang Cheng,et al.  Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film , 2014, Scientific Reports.

[52]  Reinhard Uecker,et al.  Elastic strain engineering of ferroic oxides , 2014 .

[53]  Sergei V. Kalinin,et al.  Band excitation in scanning probe microscopy: recognition and functional imaging. , 2014, Annual review of physical chemistry.

[54]  Venkata Sreenivas Puli,et al.  Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O4 , 2014 .

[55]  D. Xue,et al.  Mechanism of interfacial magnetoelectric coupling in composite multiferroics , 2014 .

[56]  Ashok Kumar,et al.  Effect of thickness on dielectric, ferroelectric, and optical properties of Ni substituted Pb(Zr0.2Ti0.8)O3 thin films , 2015 .

[57]  R. Kotnala,et al.  Magnetoelectric dipole interaction in RF-magnetron sputtered (1 − x) BiFeO3–xBaTiO3 thin films , 2015 .

[58]  Chang-Beom Eom,et al.  Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy. , 2015, ACS nano.

[59]  R. Harrison,et al.  Elastic and magnetoelastic relaxation behaviour of multiferroic (ferromagnetic + ferroelectric + ferroelastic) Pb(Fe0.5Nb0.5)O3 perovskite , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[60]  G. Srinivasan,et al.  Dielectric anomalies due to grain boundary conduction in chemically substituted BiFeO3 , 2015 .

[61]  R. Kotnala,et al.  Giant magnetoelectric coupling interaction in BaTiO3/BiFeO3/BaTiO3 trilayer multiferroic heterostructures , 2015 .

[62]  R. Kotnala,et al.  Interfacial Charge Induced Magnetoelectric Coupling at BiFeO₃/BaTiO₃ Bilayer Interface. , 2015, ACS applied materials & interfaces.

[63]  Venkata Sreenivas Puli,et al.  Studies of Phase Transitions and Magnetoelectric Coupling in PFN-CZFO Multiferroic Composites , 2016 .

[64]  Fengyuan Zhang,et al.  Magnetoelectric Coupling in Well-Ordered Epitaxial BiFeO3/CoFe2O4/SrRuO3 Heterostructured Nanodot Array. , 2016, ACS nano.

[65]  Sergei V. Kalinin,et al.  Studies on dielectric, optical, magnetic, magnetic domain structure, and resistance switching characteristics of highly c-axis oriented NZFO thin films , 2017 .

[66]  Sergei V. Kalinin,et al.  Reconstructing phase diagrams from local measurements via Gaussian processes: mapping the temperature-composition space to confidence , 2018, npj Computational Materials.