Prox-Regularity of Spectral Functions and Spectral Sets

Important properties such as differentiability and convexity of symmetric functions in $\mathbb{R}^{n}$ can be transferred to the corresponding spectral functions and vice-versa. Continuing to built on this line of research, we hereby prove that a spectral function $F\colon {\bf S}^n \rightarrow \mathbb{R\cup \{+\infty \}}$ is prox-regular if and only if the underlying symmetric function $f\colon\mathbb{R}^{n}\rightarrow \mathbb{R\cup \{+\infty \}}$ is prox-regular. Relevant properties of symmetric sets are also discussed.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Chandler Davis All convex invariant functions of hermitian matrices , 1957 .

[3]  R. Rockafellar Favorable Classes of Lipschitz Continuous Functions in Subgradient Optimization , 1981 .

[4]  Jiri Dadok On the C∞ Chevalley's theorem , 1982 .

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  E. Verriest,et al.  On analyticity of functions involving eigenvalues , 1994 .

[7]  F. Clarke,et al.  Proximal Smoothness and the Lower{C 2 Property , 1995 .

[8]  R. Rockafellar,et al.  Prox-regular functions in variational analysis , 1996 .

[9]  Adrian S. Lewis,et al.  Convex Analysis on the Hermitian Matrices , 1996, SIAM J. Optim..

[10]  A. S. Lewis,et al.  Derivatives of Spectral Functions , 1996, Math. Oper. Res..

[11]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[12]  Adrian S. Lewis,et al.  Nonsmooth analysis of eigenvalues , 1999, Math. Program..

[13]  R. Rockafellar,et al.  Local differentiability of distance functions , 2000 .

[14]  Hristo S. Sendov,et al.  Twice Difierentiable Spectral Functions , 2000 .

[15]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[16]  Adrian S. Lewis,et al.  Twice Differentiable Spectral Functions , 2001, SIAM J. Matrix Anal. Appl..

[17]  A. Lewis,et al.  Identifying active constraints via partial smoothness and prox-regularity , 2003 .

[18]  A. Daniilidis,et al.  Subsmooth sets: Functional characterizations and related concepts , 2004 .

[19]  L. Thibault,et al.  Uniform prox-regularity of functions and epigraphs in Hilbert spaces , 2005 .

[20]  A. Daniilidis,et al.  Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems , 2006 .

[21]  Adrian S. Lewis,et al.  Alternating Projections on Manifolds , 2008, Math. Oper. Res..