Interactive design of generic chemical patterns.

Every medicinal chemist has to create chemical patterns occasionally for querying databases, applying filters or describing functional groups. However, the representations of chemical patterns have been so far limited to languages with highly complex syntax, handicapping the application of patterns. Graphic pattern editors similar to chemical editors can facilitate the work with patterns. In this article, we review the interfaces of frequently used web search engines for chemical patterns. We take a look at pattern editing concepts of standalone chemical editors and finally present a completely new, unpublished graphical approach to pattern design, the SMARTSeditor.

[1]  John M. Barnard,et al.  Substructure searching methods: Old and new , 1993, J. Chem. Inf. Comput. Sci..

[2]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[3]  Peter Ertl,et al.  Molecular structure input on the web , 2010, J. Cheminformatics.

[4]  Wendy A. Warr,et al.  Representation of chemical structures , 2011 .

[5]  Yanli Wang,et al.  PubChem: a public information system for analyzing bioactivities of small molecules , 2009, Nucleic Acids Res..

[6]  I. Rayment,et al.  The structural basis of blebbistatin inhibition and specificity for myosin II , 2005, Nature Structural &Molecular Biology.

[7]  Dimitris K. Agrafiotis,et al.  Efficient Substructure Searching of Large Chemical Libraries: The ABCD Chemical Cartridge , 2011, J. Chem. Inf. Model..

[8]  Evan Bolton,et al.  The PubChem chemical structure sketcher , 2009, J. Cheminformatics.

[9]  Alan Mcnaught,et al.  The IUPAC international chemical identifier : InChl-A new standard for molecular informatics , 2006 .

[10]  Jonathan Brecher Graphical representation standards for chemical structure diagrams (IUPAC Recommendations 2008) , 2008 .

[11]  Matthias Rarey,et al.  Maximum common subgraph isomorphism algorithms and their applications in molecular science: a review , 2011 .

[12]  Matthias Rarey,et al.  Recore: A Fast and Versatile Method for Scaffold Hopping Based on Small Molecule Crystal Structure Conformations , 2007, J. Chem. Inf. Model..

[13]  S. Enoch,et al.  Identification of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach , 2008, SAR and QSAR in environmental research.

[14]  W Patrick Walters,et al.  Prediction of 'drug-likeness'. , 2002, Advanced drug delivery reviews.

[15]  Andrew Wilkinson Compendium of Chemical Terminology , 1997 .

[16]  Gisbert Schneider,et al.  Computer-based de novo design of drug-like molecules , 2005, Nature Reviews Drug Discovery.

[17]  Nicolas Foloppe,et al.  Drug-like Annotation and Duplicate Analysis of a 23-Supplier Chemical Database Totalling 2.7 Million Compounds , 2004, J. Chem. Inf. Model..

[18]  Brian Hudson,et al.  Strategic Pooling of Compounds for High-Throughput Screening , 1999, J. Chem. Inf. Comput. Sci..

[19]  Arthur Dalby,et al.  Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited , 1992, J. Chem. Inf. Comput. Sci..

[20]  D. Goodsell,et al.  Visualization of macromolecular structures , 2010, Nature Methods.

[21]  J. Irwin,et al.  Benchmarking sets for molecular docking. , 2006, Journal of medicinal chemistry.

[22]  Katrin Stierand,et al.  From Structure Diagrams to Visual Chemical Patterns , 2010, J. Chem. Inf. Model..

[23]  Jörg K. Wegner,et al.  Molecular Query Language (MQL)A Context-Free Grammar for Substructure Matching , 2007, J. Chem. Inf. Model..

[24]  Lynda B. M. Ellis,et al.  Microbial Pathway Prediction: A Functional Group Approach , 2003, J. Chem. Inf. Comput. Sci..

[25]  Yvonne C. Martin,et al.  ALADDIN: An integrated tool for computer-assisted molecular design and pharmacophore recognition from geometric, steric, and substructure searching of three-dimensional molecular structures , 1989, J. Comput. Aided Mol. Des..

[26]  William J. Wiswesser,et al.  Historic development of chemical notations , 1985, J. Chem. Inf. Comput. Sci..

[27]  Michael M. Hann,et al.  RECAP-Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry , 1998, J. Chem. Inf. Comput. Sci..

[28]  Tudor I. Oprea,et al.  An automated PLS search for biologically relevant QSAR descriptors , 2004, J. Comput. Aided Mol. Des..

[29]  Ryan G. Coleman,et al.  ZINC: A Free Tool to Discover Chemistry for Biology , 2012, J. Chem. Inf. Model..

[30]  Ian A. Watson,et al.  Characteristic physical properties and structural fragments of marketed oral drugs. , 2004, Journal of medicinal chemistry.

[31]  Antony J. Williams,et al.  ChemSpider:: An Online Chemical Information Resource , 2010 .

[32]  Matthias Rarey,et al.  TFD: Torsion Fingerprints As a New Measure To Compare Small Molecule Conformations , 2012, J. Chem. Inf. Model..

[33]  Matthias Rarey,et al.  Automated Drawing of Structural Molecular Formulas under Constraints , 2004, J. Chem. Inf. Model..

[34]  Valerie J. Gillet,et al.  Compression of Molecular Interaction Fields Using Wavelet Thumbnails: Application to Molecular Alignment , 2012, J. Chem. Inf. Model..