Construction of Porous Cotio3 Microrods with Enhanced Performance as Lithium-Ion Battery Anode

[1]  Shaohua Wu,et al.  Electrospun strong, bioactive, and bioabsorbable silk fibroin/poly (L-lactic-acid) nanoyarns for constructing advanced nanotextile tissue scaffolds , 2022, Materials today. Bio.

[2]  Jun-chao Zheng,et al.  High-Entropy Oxides as Advanced Anode Materials for Long-Life Lithium-Ion Batteries , 2022, Nano Energy.

[3]  Tao Li,et al.  Flexible electrospun iron compounds/carbon fibers: phase transformation and electrochemical properties , 2022, Electrochimica Acta.

[4]  Zhe Zhang,et al.  Layered Niobium Oxide Hydrate Anode with Excellent Performance for Lithium-Ion Batteries. , 2021, ACS applied materials & interfaces.

[5]  C. Liang,et al.  ZnMn2O4 spheres anchored on jute porous carbon for use as a high-performance anode material in lithium-ion batteries , 2021 .

[6]  Z. Chen,et al.  High Specific Capacity of Carbon Coating Lemon-like SiO2 Hollow spheres for Lithium-ion Batteries , 2021, Electrochimica Acta.

[7]  Qiming Liu,et al.  Binary-Metal Mn2SnO4 Nanoparticles and Sn Confined in a Cubic Frame with N-Doped Carbon for Enhanced Lithium and Sodium Storage. , 2021, ACS applied materials & interfaces.

[8]  Qiang Zhang,et al.  High‐Capacity and Kinetically Accelerated Lithium Storage in MoO3 Enabled by Oxygen Vacancies and Heterostructure , 2021, Advanced Energy Materials.

[9]  Lan Xia,et al.  Self-Templated Formation of Fluffy Graphene-Wrapped Ni5P4 Hollow Spheres for Li-Ion Battery Anodes with High Cycling Stability. , 2021, ACS applied materials & interfaces.

[10]  Meilin Liu,et al.  Yolk-shell structured CuSi2P3@Graphene nanocomposite anode for long-life and high-rate lithium-ion batteries , 2021 .

[11]  Seong‐Hyeon Hong,et al.  Manganese Tetraphosphide (MnP4) as a High Capacity Anode for Lithium‐Ion and Sodium‐Ion Batteries , 2021, Advanced Energy Materials.

[12]  Weifang Liu,et al.  Bimetal–organic-framework derived CoTiO3/C hexagonal micro-prisms as high-performance anode materials for metal ion batteries , 2021 .

[13]  Mitchell A. Kuss,et al.  Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction. , 2020, Acta biomaterialia.

[14]  Zheng Zhang,et al.  Yolk-shell structured ZnCo2O4 spheres anchored on reduced graphene oxide with enhance lithium/sodium storage performance , 2020 .

[15]  Yiqian Wang,et al.  Double-shell SnO2@Fe2O3 hollow spheres as a high-performance anode material for lithium-ion batteries , 2020 .

[16]  Sijie Li,et al.  Electron beam-induced morphology transformations of Fe2TiO5 nanoparticles , 2019, Journal of Materials Chemistry C.

[17]  Gang Chen,et al.  Interior Supported Hierarchical TiO 2 @Co 3 O 4 Derived from MOF‐on‐MOF Architecture with Enhanced Electrochemical Properties for Lithium Storage , 2019, ChemElectroChem.

[18]  Junshuang Zhou,et al.  MOF-derived in situ synthesized carbon-coated ilmenite cobalt titanate nanocrystalline, high-stability lithium-ion batteries , 2019, Journal of Alloys and Compounds.

[19]  Yiqian Wang,et al.  Facile synthesis of interconnected mesoporous ZnMn2O4 nano-peanuts for Li-storage via distinct structure design , 2018, Materials Research Bulletin.

[20]  Tang Yiwei,et al.  Porous CoTiO3 microbars as super rate and long life anodes for sodium ion batteries , 2018, Ceramics International.

[21]  Yiqian Wang,et al.  Transition metal oxide nanostructures: premeditated fabrication and applications in electronic and photonic devices , 2018, Journal of Materials Science.

[22]  Xing-long Wu,et al.  Electrochemical In Situ Formation of a Stable Ti-Based Skeleton for Improved Li-Storage Properties: A Case Study of Porous CoTiO3 Nanofibers. , 2017, Chemistry.

[23]  N. Kalaiselvi,et al.  Synergistic Effect of Flakes Containing Interconnected Nanoparticles and Conducting Graphene Additive to Qualify ZnMn2O4 as Potential Lithium‐Battery Anode , 2017 .

[24]  Yuefei Zhang,et al.  In-situ TEM experiments and first-principles studies on the electrochemical and mechanical behaviors of α-MoO3 in Li-ion batteries , 2016 .

[25]  J. Eckert,et al.  Self-Organized TiO2/CoO Nanotubes as Potential Anode Materials for Lithium Ion Batteries , 2015 .

[26]  Xiaosheng Tang,et al.  Thin MoS2 nanoflakes encapsulated in carbon nanofibers as high-performance anodes for lithium-ion batteries. , 2014, ACS applied materials & interfaces.

[27]  H. Fu,et al.  Porous Cobalt Titanate Nanorod: A New Candidate for Visible Light‐Driven Photocatalytic Water Oxidation , 2014 .

[28]  Kun Chang,et al.  L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. , 2011, ACS nano.

[29]  C. Jeon,et al.  Microwave dielectric properties of ATiO3 (A = Ni, Mg, Co, Mn) ceramics , 2010 .

[30]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .