An online identification algorithm of unknown time-varying delay and internal multimodel control for discrete non-linear systems

ABSTRACT In this paper, an online algorithm is proposed for the identification of unknown time-varying input delay in the case of discrete non-linear systems described by decoupled multimodel. This method relies on the minimization of a performance index based on the error between the real system and the partial internal models outputs. In addition, a decoupled internal multimodel control is proposed for the compensation of discrete non-linear systems with time-varying delay. This control scheme incorporates partial internal model controls. Each partial controller is associated to a specified operating zone of the non-linear system. The switching between these controllers is ensured by a supervisor that contains a set of local predictors. A simulation example is carried out to illustrate the significance of the proposed time-varying delay identification algorithm and the proposed internal multimodel control scheme.

[1]  T. Floquet,et al.  Delay Estimation Algorithm for Nonlinear Time-Delay Systems with Unknown Inputs , 2012, TDS.

[2]  Dimitar Filev Fuzzy modeling of complex systems , 1991, Int. J. Approx. Reason..

[3]  P. Charbonnaud,et al.  Supervised internal multi-model control of a dam-gallery open-channel system , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[5]  Fabrice Druaux,et al.  Multimodel and neural emulators for non-linear systems: application to an indirect adaptive neural control , 2012, Int. J. Model. Identif. Control..

[6]  László Keviczky Combined identification and control: Another way☆☆☆ , 1996 .

[7]  A. Feuer,et al.  Time delay estimation in continuous linear time-invariant systems , 1994, IEEE Trans. Autom. Control..

[8]  Alexandre Seuret Commande et observation des systèmes à retards variables: Théorie et applications , 2006 .

[9]  Ridha Ben Abdennour,et al.  Optimal Systematic Determination of Models’ Base for Multimodel Representation: Real Time Application , 2014, Int. J. Autom. Comput..

[10]  Feng Ding,et al.  Recursive Parameter Estimation Algorithms and Convergence for a Class of Nonlinear Systems with Colored Noise , 2016, Circuits Syst. Signal Process..

[11]  N.J.I. Mars,et al.  Time delay estimation in nonlinear systems , 1981 .

[12]  M. Morari,et al.  Internal Model Control: extension to nonlinear system , 1986 .

[13]  F. Ding,et al.  Modelling and multi-innovation parameter identification for Hammerstein nonlinear state space systems using the filtering technique , 2016 .

[14]  Feng Ding,et al.  Recursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filtering , 2016 .

[15]  Xuemei Ren,et al.  Identification of Nonlinear Systems With Unknown Time Delay Based on Time-Delay Neural Networks , 2007, IEEE Transactions on Neural Networks.

[16]  Feng Ding,et al.  Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model , 2016, Autom..

[17]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[18]  Mohamed Benrejeb,et al.  On an internal multimodel control for nonlinear multivariable systems - A comparative study , 2013 .

[19]  Raul Ordonez,et al.  Control system design by using a multi-controller approach with a real-time experimentation for a robot wrist , 2002 .

[20]  Feng Ding,et al.  The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique , 2016, Signal Process..

[21]  Ling Xu,et al.  Application of the Newton iteration algorithm to the parameter estimation for dynamical systems , 2015, J. Comput. Appl. Math..

[22]  B. Marx,et al.  Nonlinear system identification using heterogeneous multiple models , 2013, Int. J. Appl. Math. Comput. Sci..

[23]  Ling Xu,et al.  A proportional differential control method for a time-delay system using the Taylor expansion approximation , 2014, Appl. Math. Comput..

[24]  Riccardo Scattolini,et al.  The Recursive Estimation of Time Delay in Sampled-Data Control Systems , 1995 .

[25]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[26]  Richard D. Braatz,et al.  On the "Identification and control of dynamical systems using neural networks" , 1997, IEEE Trans. Neural Networks.

[27]  Ling Xu,et al.  Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration , 2015 .

[28]  Ahmad A. Mohammad,et al.  Neural Networks Based Time-Delay Estimation using DCT Coefficients , 2009 .

[29]  Rodolfo Orjuela Contribution à l'estimation d'état et au diagnostic des systèmes représentés par des multimodèles , 2008 .

[30]  José Ragot,et al.  Systematic Multimodeling Methodology Applied to an Activated Sludge Reactor Model , 2010 .

[31]  Samah BEN ATIA,et al.  Synthesis of multi-observers for discrete-time nonlinear systems with delayed output , 2014 .

[32]  Feng Ding,et al.  A multi-innovation state and parameter estimation algorithm for a state space system with d-step state-delay , 2017, Signal Process..

[33]  Ling Xu,et al.  The damping iterative parameter identification method for dynamical systems based on the sine signal measurement , 2016, Signal Process..

[34]  Mekki Ksouri,et al.  Multimodel Approach using Neural Networks for Complex Systems Modeling and Identification , 2008 .

[35]  M. Chtourou,et al.  Internal Multiple Models Control Based on Robust Clustering Algorithm , 2011 .

[36]  Maria Adler,et al.  Stable Adaptive Systems , 2016 .

[37]  Ridha Ben Abdennour,et al.  Supervised Model Predictive Control for Discrete-time Nonlinear Systems with Time-varying Delay , 2015 .

[38]  Y. Tan,et al.  TIME-VARYING TIME-DELAY ESTIMATION FOR NONLINEAR SYSTEMS USING NEURAL NETWORKS , 2004 .

[39]  Rene Galindo Orozco,et al.  A procedure to linearize a class of non-linear systems modelled by bond graphs , 2015 .

[40]  Ravindra D. Gudi,et al.  Identification of complex nonlinear processes based on fuzzy decomposition of the steady state space , 2003 .

[41]  G. Dumont,et al.  New method for delay estimation , 1990, 29th IEEE Conference on Decision and Control.

[42]  Roderick Murray-Smith,et al.  Multiple Model Approaches to Modelling and Control , 1997 .

[43]  Ridha Ben Abdennour,et al.  Supervision based on partial predictors for a multimodel generalised predictive control: experimental validation on a semi-batch reactor , 2009, Int. J. Model. Identif. Control..

[44]  F. Ding,et al.  Filtering-based iterative identification for multivariable systems , 2016 .

[45]  MezghaniLAIL UPRESA Multimodel Control of Discrete Systems with Uncertainties , 2001 .

[46]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .