Cryo-EM in drug discovery: achievements, limitations and prospects

Cryo-electron microscopy (cryo-EM) of non-crystalline single particles is a biophysical technique that can be used to determine the structure of biological macromolecules and assemblies. Historically, its potential for application in drug discovery has been heavily limited by two issues: the minimum size of the structures it can be used to study and the resolution of the images. However, recent technological advances — including the development of direct electron detectors and more effective computational image analysis techniques — are revolutionizing the utility of cryo-EM, leading to a burst of high-resolution structures of large macromolecular assemblies. These advances have raised hopes that single-particle cryo-EM might soon become an important tool for drug discovery, particularly if they could enable structural determination for 'intractable' targets that are still not accessible to X-ray crystallographic analysis. This article describes the recent advances in the field and critically assesses their relevance for drug discovery as well as discussing at what stages of the drug discovery pipeline cryo-EM can be useful today and what to expect in the near future.

[1]  Friedrich Förster,et al.  Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome , 2014, Proceedings of the National Academy of Sciences.

[2]  T. Walz,et al.  A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter , 2015, Nature.

[3]  Maria Miller,et al.  Crystal structure of a retroviral protease proves relationship to aspartic protease family , 1989, Nature.

[4]  Ardan Patwardhan,et al.  Collaborative Computational Project for Electron cryo-Microscopy , 2015, Acta crystallographica. Section D, Biological crystallography.

[5]  Ottilie von Loeffelholz,et al.  Focused classification and refinement in high-resolution cryo-EM structural analysis of ribosome complexes. , 2017, Current opinion in structural biology.

[6]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[7]  Alan Brown,et al.  Structure of the Yeast Mitochondrial Large Ribosomal Subunit , 2014, Science.

[8]  X. Bai,et al.  Structures of the Calcium-activated Non-Selective Cation Channel TRPM4 , 2017, Nature.

[9]  H. Stark,et al.  Snapshots of the RNA editing machine in trypanosomes captured at different assembly stages in vivo , 2009, The EMBO journal.

[10]  B Rubin,et al.  Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. , 1977, Science.

[11]  George T Detitta,et al.  Thermofluor-based high-throughput stability optimization of proteins for structural studies. , 2006, Analytical biochemistry.

[12]  M. Perutz,et al.  Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis , 1960, Nature.

[13]  Henning Urlaub,et al.  Molecular architecture of the Saccharomyces cerevisiae activated spliceosome , 2016, Science.

[14]  Toh-Ming Lu,et al.  Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. , 2015, Structure.

[15]  Z. Zhou,et al.  Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM , 2017, Nature Structural & Molecular Biology.

[16]  Wolfgang Baumeister,et al.  Volta phase plate cryo-EM of the small protein complex Prx3 , 2016, Nature Communications.

[17]  R. MacKinnon,et al.  Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel , 2016, Nature.

[18]  D. Julius,et al.  Structure of the TRPV1 ion channel determined by electron cryo-microscopy , 2013, Nature.

[19]  S. Scheres,et al.  How cryo-EM is revolutionizing structural biology. , 2015, Trends in biochemical sciences.

[20]  Wen Jiang,et al.  Antibody-Based Affinity Cryo-Electron Microscopy at 2.6 Å Resolution , 2016, bioRxiv.

[21]  J. Kowal,et al.  Structural basis of small-molecule inhibition of human multidrug transporter ABCG2 , 2018, Nature Structural & Molecular Biology.

[22]  Toh-Ming Lu,et al.  Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. , 2009, Journal of structural biology.

[23]  M. S. Chapman,et al.  The 2.8 Å Electron Microscopy Structure of Adeno-Associated Virus-DJ Bound by a Heparinoid Pentasaccharide , 2017, Molecular therapy. Methods & clinical development.

[24]  L. Parts,et al.  Binding of ISRIB reveals a regulatory site in the nucleotide exchange factor eIF2B , 2018, Science.

[25]  Ad Bax,et al.  Methodological advances in protein NMR , 1993 .

[26]  W. Chiu,et al.  Seeing GroEL at 6 A resolution by single particle electron cryomicroscopy. , 2004, Structure.

[27]  Alexis Rohou,et al.  cisTEM: User-friendly software for single-particle image processing , 2017, bioRxiv.

[28]  Tatu Pantsar The current understanding of KRAS protein structure and dynamics , 2019, Computational and structural biotechnology journal.

[29]  S. Scheres,et al.  Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles , 2013, eLife.

[30]  C. Dienemann,et al.  Transcription initiation complex structures elucidate DNA opening , 2016, Nature.

[31]  T. S. Kobilka,et al.  Cryo-EM structure of the activated GLP-1 receptor in complex with G protein , 2017, Nature.

[32]  M. Perutz,et al.  Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. , 1960, Nature.

[33]  Robert J Collier,et al.  Atomic structure of anthrax protective antigen pore elucidates toxin translocation , 2015 .

[34]  W. Baumeister,et al.  Using the Volta phase plate with defocus for cryo-EM single particle analysis , 2016, bioRxiv.

[35]  Lori A. Passmore,et al.  Architecture of eukaryotic mRNA 3′-end processing machinery , 2017, Science.

[36]  Anchi Cheng,et al.  Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy. , 2011, Journal of structural biology.

[37]  P. Schurtenberger,et al.  New controlled environment vitrification system for cryo‐transmission electron microscopy: design and application to surfactant solutions , 2000, Journal of microscopy.

[38]  Yong Zi Tan,et al.  Routine single particle CryoEM sample and grid characterization by tomography , 2017, bioRxiv.

[39]  C. Yoshioka,et al.  Anti-diabetic drug binding site in a mammalian KATP channel revealed by Cryo-EM , 2017, eLife.

[40]  D. Julius,et al.  TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action , 2016, Nature.

[41]  Utz Fischer,et al.  ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space , 2015, Nature Methods.

[42]  Piotr Neumann,et al.  Validating Resolution Revolution. , 2018, Structure.

[43]  Arthur Christopoulos,et al.  Phase-plate cryo-EM structure of a class B GPCR-G protein complex , 2017, Nature.

[44]  J. Frank,et al.  Structure and assembly model for the Trypanosoma cruzi 60S ribosomal subunit , 2016, Proceedings of the National Academy of Sciences.

[45]  B. Chait,et al.  The complete structure of the small-subunit processome , 2017, Nature Structural & Molecular Biology.

[46]  H. Stark,et al.  Cryo-EM structure of a human spliceosome activated for step 2 of splicing , 2017, Nature.

[47]  Catherine L. Worth,et al.  Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[48]  Friedrich Förster,et al.  Near-atomic resolution structural model of the yeast 26S proteasome , 2012, Proceedings of the National Academy of Sciences.

[49]  David Baker,et al.  De novo protein structure determination from near-atomic resolution cryo-EM maps , 2015, Nature Methods.

[50]  Gilles Hermann,et al.  Automated screening of 2D crystallization trials using transmission electron microscopy: a high-throughput tool-chain for sample preparation and microscopic analysis. , 2011, Journal of structural biology.

[51]  Jue Chen,et al.  Structural Basis of Substrate Recognition by the Multidrug Resistance Protein MRP1 , 2017, Cell.

[52]  H. Stark,et al.  Molecular architecture of the human U4/U6.U5 tri-snRNP , 2016, Science.

[53]  M. G. Rossmann,et al.  International Tables for Crystallography: Crystallography of biological macromolecules , 2006 .

[54]  M. Sundström,et al.  Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water* , 2000, Journal of biomolecular NMR.

[55]  J. Frank,et al.  Use of multivariate statistics in analysing the images of biological macromolecules. , 1981, Ultramicroscopy.

[56]  W. Kühlbrandt,et al.  Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector , 2014, eLife.

[57]  Matthew L. Baker,et al.  Backbone structure of the infectious ε15 virus capsid revealed by electron cryomicroscopy , 2008, Nature.

[58]  R. R. Ernst,et al.  Application of Fourier Transform Spectroscopy to Magnetic Resonance , 1966 .

[59]  J. Chambers,et al.  A G Protein-coupled Receptor for UDP-glucose* , 2000, The Journal of Biological Chemistry.

[60]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[61]  Wolfgang Jahnke Faculty Opinions recommendation of Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. , 2003 .

[62]  M. Jaskólski,et al.  Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. , 1989, Science.

[63]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[64]  D. Julius,et al.  TRPV1 structures in distinct conformations reveal mechanisms of activation , 2013, Nature.

[65]  Timothy F. Havel,et al.  Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. , 1985, Journal of molecular biology.

[66]  Erik Lindahl,et al.  Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2 , 2016 .

[67]  A. Cheng,et al.  Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. , 2012, Structure.

[68]  M. Adrian,et al.  Vitrification of cryoelectron microscopy specimens revealed by high‐speed photographic imaging , 2003, Journal of microscopy.

[69]  Kyle J. Wright,et al.  Nonfouling NTA-PEG-Based TEM Grid Coatings for Selective Capture of Histidine-Tagged Protein Targets from Cell Lysates. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[70]  Maarten Kuijper,et al.  FEI's direct electron detector developments: Embarking on a revolution in cryo-TEM. , 2015, Journal of structural biology.

[71]  David A. Agard,et al.  Anisotropic Correction of Beam-induced Motion for Improved Single-particle Electron Cryo-microscopy , 2016, bioRxiv.

[72]  Carsten Sachse,et al.  Model-based local density sharpening of cryo-EM maps , 2017, eLife.

[73]  J. Dubochet,et al.  Cryo-negative staining. , 1998, Micron.

[74]  Marina V. Rodnina,et al.  Structure of the E. coli ribosome–EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM , 2015, Nature.

[75]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[76]  Yigong Shi,et al.  Structure of an endogenous yeast 26S proteasome reveals two major conformational states , 2016, Proceedings of the National Academy of Sciences.

[77]  Marin van Heel,et al.  IMAGIC - A FAST, FLEXIBLE AND FRIENDLY IMAGE-ANALYSIS SOFTWARE SYSTEM , 1981 .

[78]  Roderick MacKinnon,et al.  Cryo-EM Structure of the Open Human Ether-à-go-go-Related K+ Channel hERG , 2017, Cell.

[79]  T. J. R. Harris High throughput X-ray crystallography for Drug Discovery , 2000 .

[80]  P. Hirth,et al.  Vemurafenib: the first drug approved for BRAF-mutant cancer , 2012, Nature Reviews Drug Discovery.

[81]  J R Nesselroade,et al.  P- Technique Comes of Age , 1985, Research on aging.

[82]  John P. Overington,et al.  X-ray analysis of HIV-1 proteinase at 2.7 Å resolution confirms structural homology among retroviral enzymes , 1989, Nature.

[83]  R. Lavery,et al.  Erratum: Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1 (Molecular Cell (2017) 66 (384–397)(S109727651730268X)(10.1016/j.molcel.2017.04.012) , 2017 .

[84]  H. Ruska,et al.  Die Sichtbarmachung von pflanzlichem Virus im Übermikroskop , 1939, Naturwissenschaften.

[85]  A Leith,et al.  SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. , 1996, Journal of structural biology.

[86]  V. Ramakrishnan,et al.  Structures of the human mitochondrial ribosome in native states of assembly , 2017, Nature Structural &Molecular Biology.

[87]  G. Chuang,et al.  Quaternary contact in the initial interaction of CD4 with the HIV-1 envelope trimer , 2017, Nature Structural &Molecular Biology.

[88]  Wen Jiang,et al.  Antibody-based affinity cryo-EM grid. , 2016, Methods.

[89]  C. Oubridge,et al.  CryoEM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution , 2016, Nature.

[90]  R. Lavery,et al.  Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1. , 2017, Molecular cell.

[91]  Andreas Martin,et al.  Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition , 2016, eLife.

[92]  R Henderson,et al.  Electron-crystallographic refinement of the structure of bacteriorhodopsin. , 1996, Journal of molecular biology.

[93]  Aina E Cohen,et al.  An automated system to mount cryo-cooled protein crystals on a synchrotron beam line, using compact sample cassettes and a small-scale robot. , 2002, Journal of applied crystallography.

[94]  A. Engelman,et al.  Cryo-EM reveals a novel octameric integrase structure for β-retroviral intasome function , 2016, Nature.

[95]  R. MacKinnon,et al.  Structures of the Human HCN1 Hyperpolarization-Activated Channel , 2017, Cell.

[96]  W. Kühlbrandt The Resolution Revolution , 2014, Science.

[97]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[98]  F. Sigworth A maximum-likelihood approach to single-particle image refinement. , 1998, Journal of structural biology.

[99]  Holger Stark,et al.  Electron radiation damage to protein crystals of bacteriorhodopsin at different temperatures , 1996 .

[100]  R. Henderson,et al.  Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy , 2014, Ultramicroscopy.

[101]  Dong-Hua Chen,et al.  De novo backbone trace of GroEL from single particle electron cryomicroscopy. , 2008, Structure.

[102]  Georgios Skiniotis,et al.  Atomic resolution snapshot of Leishmania ribosome inhibition by the aminoglycoside paromomycin , 2017, Nature Communications.

[103]  C. Nichols,et al.  Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms , 2018, Nature Structural & Molecular Biology.

[104]  Lars Nordenskiöld,et al.  3.9 Å structure of the nucleosome core particle determined by phase-plate cryo-EM , 2016, Nucleic acids research.

[105]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[106]  D. Tegunov,et al.  Structures of transcription pre-initiation complex with TFIIH and Mediator , 2017, Nature.

[107]  S. Scheres,et al.  Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine , 2014, eLife.

[108]  C. Russo,et al.  Progress towards an optimal specimen support for electron cryomicroscopy , 2016, Current opinion in structural biology.

[109]  Bridget Carragher,et al.  Structure of the Insulin Receptor-Insulin Complex by Single Particle CryoEM analysis , 2018, Nature.

[110]  Prashant Rao,et al.  Cryo-EM Structures Reveal Mechanism and Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex , 2017, Cell.

[111]  A. Cheng,et al.  Beam-induced motion of vitrified specimen on holey carbon film. , 2012, Journal of structural biology.

[112]  Dominika Elmlund,et al.  Single‐particle cryo‐EM—Improved ab initio 3D reconstruction with SIMPLE/PRIME , 2018, Protein science : a publication of the Protein Society.

[113]  Mindy I. Davis,et al.  Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery , 2016, Cell.

[114]  B. Klaholz,et al.  Visualization of chemical modifications in the human 80S ribosome structure , 2017, Nature.

[115]  G. Murphy,et al.  Electron cryotomography sample preparation using the Vitrobot , 2006, Nature Protocols.

[116]  M. van Heel,et al.  Fourier shell correlation threshold criteria. , 2005, Journal of structural biology.

[117]  A. Cheng,et al.  2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy , 2015, eLife.

[118]  Christopher G. Tate,et al.  Structure of the adenosine A(2A) receptor bound to an engineered G protein (vol 536, pg 104, 2016) , 2016 .

[119]  E. Shakhnovich,et al.  Common activation mechanism of class A GPCRs , 2019, eLife.

[120]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[121]  Robert M Glaeser,et al.  Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens. , 2016, Biophysical journal.

[122]  P. Kraulis,et al.  Three-dimensional NMR spectroscopy of a protein in solution , 1988, Nature.

[123]  Giovanni Cardone,et al.  Computational resources for cryo-electron tomography in Bsoft. , 2008, Journal of structural biology.

[124]  J. Dubochet,et al.  VITRIFICATION OF PURE WATER FOR ELECTRON MICROSCOPY , 1981 .

[125]  Yigong Shi,et al.  An atomic structure of the human 26S proteasome , 2016, Nature Structural &Molecular Biology.

[126]  Bjoern Sander,et al.  An approach for de novo structure determination of dynamic molecular assemblies by electron cryomicroscopy. , 2010, Structure.

[127]  David I Stuart,et al.  The democratization of cryo-EM , 2016, Nature Methods.

[128]  E. Tajkhorshid,et al.  Structure of the Alternative Complex III in a supercomplex with cytochrome oxidase , 2018, Nature.

[129]  G. Blobel,et al.  Human TRPML1 channel structures in open and closed conformations , 2017, Nature.

[130]  K. Henrick,et al.  New electron microscopy database and deposition system. , 2002, Trends in biochemical sciences.

[131]  Jianlin Lei,et al.  An Atomic Structure of the Human Spliceosome , 2017, Cell.

[132]  G. Herman,et al.  Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization , 2007, Nature Methods.

[133]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[134]  Dmitry Lyumkis,et al.  Likelihood-based classification of cryo-EM images using FREALIGN. , 2013, Journal of structural biology.

[135]  J Frank,et al.  Three-dimensional reconstruction of single particles embedded in ice. , 1992, Ultramicroscopy.

[136]  Sergey Melnikov,et al.  The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution , 2011, Science.

[137]  E. Ruska,et al.  Bakterien und Virus in Übermikroskopischer Aufnahme , 1938, Klinische Wochenschrift.

[138]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[139]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[140]  R. Ghirlando,et al.  Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome , 2017, Science.

[141]  Renaldo Mendoza,et al.  NMR-Based Screening of Proteins Containing 13C-Labeled Methyl Groups , 2000 .

[142]  C. A. Siebert,et al.  Cryo-EM structure of the Blastochloris viridis LH1–RC complex at 2.9 Å , 2018, Nature.

[143]  Rui Zhao,et al.  Structure of the yeast spliceosomal postcatalytic P complex , 2017, Science.

[144]  Maojun Yang,et al.  Structure of Mammalian Respiratory Supercomplex I1III2IV1 , 2016, Cell.

[145]  Yigong Shi,et al.  Structure of a yeast activated spliceosome at 3.5 Å resolution , 2016, Science.

[146]  J. Frank,et al.  Determination of the ribosome structure to a resolution of 2.5 Å by single‐particle cryo‐EM , 2017, Protein science : a publication of the Protein Society.

[147]  X. Bai,et al.  Structural insights into the voltage and phospholipid activation of mammalian TPC1 channel , 2018, Nature.

[148]  Chuangye Yan,et al.  Structure of a yeast step II catalytically activated spliceosome , 2017, Science.

[149]  J. Kowal,et al.  Structure of the human multidrug transporter ABCG2 , 2017, Nature.

[150]  Frank DiMaio,et al.  Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta , 2016, bioRxiv.

[151]  E. Gouaux,et al.  Glycine receptor mechanism elucidated by electron cryo-microscopy , 2015, Nature.

[152]  S. Subramaniam,et al.  Structural basis of kainate subtype glutamate receptor desensitization , 2016, Nature.

[153]  Max E. Wilkinson,et al.  Structure of a spliceosome remodelled for exon ligation , 2017, Nature.

[154]  A. Bartesaghi,et al.  2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition , 2016, Science.

[155]  Gabriel C Lander,et al.  Cryo-electron microscopy structure of the TRPV2 ion channel , 2015, Nature Structural &Molecular Biology.

[156]  DH Kruger,et al.  Helmut Ruska and the visualisation of viruses , 2000, The Lancet.

[157]  Nikolaus Grigorieff,et al.  Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6 , 2015, eLife.

[158]  P. Neumann,et al.  Validating Resolution Revolution. , 2018, Structure.

[159]  Andrej Bieri,et al.  Blotting-free and lossless cryo-electron microscopy grid preparation from nanoliter-sized protein samples and single-cell extracts. , 2017, Journal of structural biology.

[160]  A. Ward,et al.  Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer , 2016, Science.

[161]  R. Glaeser,et al.  Reaching the information limit in cryo-EM of biological macromolecules: experimental aspects. , 2011, Biophysical journal.

[162]  Stefan Raunser,et al.  Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution , 2016, Nature.

[163]  L. Lally The CCP 4 Suite — Computer programs for protein crystallography , 1998 .

[164]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[165]  Prashant Rao,et al.  Cryo-EM Structures of the Magnesium Channel CorA Reveal Symmetry Break upon Gating , 2016, Cell.

[166]  Juan Du,et al.  Electron cryo-microscopy structure of a human TRPM4 channel , 2017, Nature.

[167]  Lori A. Passmore,et al.  Ultrastable gold substrates for electron cryomicroscopy , 2014, Science.

[168]  J. Dubochet,et al.  Electron microscopy of frozen water and aqueous solutions , 1982 .

[169]  W. Suszynski,et al.  New controlled environment vitrification system for preparing wet samples for cryo‐SEM , 2008, Journal of microscopy.

[170]  Jingdong Cheng,et al.  3.2-Å-resolution structure of the 90S preribosome before A1 pre-rRNA cleavage , 2017, Nature Structural & Molecular Biology.

[171]  J. Rubinstein Cryo-EM Captures the Dynamics of Ion Channel Opening , 2017, Cell.

[172]  A Wlodawer,et al.  Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. , 1989, Science.

[173]  G. Waksman,et al.  Cryo-EM Structure of a Relaxase Reveals the Molecular Basis of DNA Unwinding during Bacterial Conjugation , 2017, Cell.

[174]  Florian Beck,et al.  Computer controlled cryo-electron microscopy--TOM² a software package for high-throughput applications. , 2011, Journal of structural biology.

[175]  Matthew L. Baker,et al.  Backbone structure of the infectious Epsilon15 virus capsid revealed by electron cryomicroscopy , 2008 .

[176]  Chuangye Yan,et al.  Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution , 2016, Science.

[177]  Wen Jiang,et al.  Selective Capture of Histidine-tagged Proteins from Cell Lysates Using TEM grids Modified with NTA-Graphene Oxide , 2016, Scientific Reports.

[178]  Zhen Yan,et al.  Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution , 2016, Nature.

[179]  X. Bai,et al.  Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein , 2018, bioRxiv.

[180]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[181]  J. Greer,et al.  Automated crystal mounting and data collection for protein crystallography. , 2000, Structure.

[182]  John E. Johnson,et al.  Maximizing the potential of electron cryomicroscopy data collected using direct detectors. , 2013, Journal of structural biology.

[183]  J. Frank,et al.  Structural Basis for Gating and Activation of RyR1 , 2016, Cell.

[184]  Claudio Dalvit,et al.  Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. , 2003, Journal of the American Chemical Society.

[185]  John L Rubinstein,et al.  Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM , 2015, bioRxiv.

[186]  Yuan He,et al.  Near-atomic resolution visualization of human transcription promoter opening , 2017 .

[187]  K. Nagai,et al.  Structure of a pre-catalytic spliceosome , 2017, Nature.

[188]  E. Dickson Faculty Opinions recommendation of Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3. , 2019, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[189]  N. Gao,et al.  Architecture of the mammalian mechanosensitive Piezo1 channel , 2015, Nature.

[190]  A. Bartesaghi,et al.  2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor , 2015, Science.

[191]  T. Pierson,et al.  The 3.8 Å resolution cryo-EM structure of Zika virus , 2016, Science.

[192]  Henning Urlaub,et al.  GraFix: sample preparation for single-particle electron cryomicroscopy , 2008, Nature Methods.

[193]  B. Chait,et al.  Modular assembly of the nucleolar pre-60S ribosomal subunit , 2018, Nature.

[194]  N. O. Manning,et al.  The protein data bank , 1999, Genetica.

[195]  Xueming Li,et al.  Structure of a eukaryotic cyclic-nucleotide-gated channel , 2017, Nature.

[196]  Jue Chen,et al.  Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator , 2016, Cell.

[197]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[198]  J. Kendrew,et al.  A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis , 1958, Nature.

[199]  H. Stark,et al.  GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM. , 2015, Structure.

[200]  Fred J Sigworth,et al.  An adaptive Expectation-Maximization algorithm with GPU implementation for electron cryomicroscopy. , 2010, Journal of structural biology.

[201]  Kenneth H. Downing,et al.  Insights into the Distinct Mechanisms of Action of Taxane and Non-Taxane Microtubule Stabilizers from Cryo-EM Structures. , 2017, Journal of molecular biology.

[202]  R. Stevens,et al.  Engineered Nanostructured β-Sheet Peptides Protect Membrane Proteins , 2013, Nature Methods.

[203]  J. Kirkwood,et al.  THE NUCLEAR MAGNETIC RESONANCE SPECTRUM OF RIBONUCLEASE1 , 1957 .

[204]  W. Baumeister,et al.  Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate , 2016, Nature Communications.

[205]  Harald Schwalbe,et al.  Perspectives on NMR in drug discovery: a technique comes of age , 2008, Nature Reviews Drug Discovery.

[206]  C. Oubridge,et al.  CryoEM structure of the spliceosome immediately after branching , 2016, Nature.

[207]  Lori A. Passmore,et al.  Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas , 2014, Nature Methods.

[208]  F Cipriani,et al.  Automation of sample mounting for macromolecular crystallography. , 2006, Acta crystallographica. Section D, Biological crystallography.

[209]  C. Tribet,et al.  Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[210]  Sjors H. W. Scheres,et al.  An atomic structure of human γ-secretase , 2015, Nature.

[211]  V. Ramakrishnan,et al.  Molecular Architecture of a Eukaryotic Translational Initiation Complex , 2013, Science.

[212]  Wolfgang Baumeister,et al.  Expanding the boundaries of cryo-EM with phase plates. , 2017, Current opinion in structural biology.

[213]  Z. Zhou,et al.  3.88 Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy , 2008, Nature.

[214]  G. Lander,et al.  Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complex , 2017, Cell.

[215]  Guanghui Yang,et al.  Sampling the conformational space of the catalytic subunit of human γ-secretase , 2015, bioRxiv.

[216]  J. Cooper,et al.  Concentration of solutes during preparation of aqueous suspensions for cryo‐electron microscopy , 1990, Journal of microscopy.

[217]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005 .

[218]  Yigong Shi,et al.  Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution , 2014, Nature.

[219]  Wah Chiu,et al.  The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase Vo Proton Channel. , 2018, Molecular cell.

[220]  E. Nogales,et al.  Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins , 2015, Cell.

[221]  Marco,et al.  Xmipp: An Image Processing Package for Electron Microscopy , 1996, Journal of structural biology.

[222]  Niyun Zhou,et al.  EMBuilder: A Template Matching-based Automatic Model-building Program for High-resolution Cryo-Electron Microscopy Maps , 2017, Scientific Reports.

[223]  W. Baumeister,et al.  Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex , 2018, Nature.

[224]  J. Frank,et al.  Three‐dimensional reconstruction from a single‐exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli , 1987, Journal of microscopy.

[225]  J. Frank,et al.  The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. , 1994, Ultramicroscopy.

[226]  M. Navia,et al.  Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1 , 1989, Nature.

[227]  N. Grigorieff,et al.  Automatic estimation and correction of anisotropic magnification distortion in electron microscopes. , 2015, Journal of structural biology.

[228]  M van Heel,et al.  The Escherichia coli large ribosomal subunit at 7.5 A resolution. , 1999, Structure.

[229]  N. Ranson,et al.  An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology , 2016, Methods.

[230]  William J. Rice,et al.  A new method for vitrifying samples for cryo-EM , 2017 .

[231]  R. R. Ernst,et al.  Two‐dimensional spectroscopy. Application to nuclear magnetic resonance , 1976 .

[232]  K. Nagai,et al.  Postcatalytic spliceosome structure reveals mechanism of 3′–splice site selection , 2017, Science.

[233]  Eric Gouaux,et al.  Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation , 2017, Science.

[234]  Xinzheng Zhang,et al.  Cryo-EM structure of a herpesvirus capsid at 3.1 Å , 2018, Science.

[235]  M. Nussenzweig,et al.  Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site , 2016, Nature Structural &Molecular Biology.

[236]  J. Dubochet,et al.  Cryo-electron microscopy of vitrified specimens , 1988, Quarterly Reviews of Biophysics.

[237]  Maojun Yang,et al.  Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2 , 2017, Cell.

[238]  M. van Lookeren Campagne,et al.  The trimeric serine protease HtrA1 forms a cage-like inhibition complex with an anti-HtrA1 antibody. , 2015, The Biochemical journal.

[239]  S. Ralph,et al.  Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis , 2017, Nature Microbiology.

[240]  H. Grubmüller,et al.  The pathway to GTPase activation of elongation factor SelB on the ribosome , 2016, Nature.

[241]  D. Julius,et al.  Structure of the TRPA1 ion channel suggests regulatory mechanisms , 2015, Nature.

[242]  Lori A. Passmore,et al.  Robust evaluation of 3D electron cryomicroscopy data using tilt-pairs , 2014, Journal of structural biology.

[243]  R. Kaptein,et al.  Nonselective three-dimensional nmr spectroscopy. The 3D NOE-HOHAHA experiment , 1988 .

[244]  N. Unwin,et al.  Analysis of transient structures by cryo-microscopy combined with rapid mixing of spray droplets. , 1994, Ultramicroscopy.

[245]  Xueming Li,et al.  Fabs enable single particle cryoEM studies of small proteins. , 2012, Structure.

[246]  Christopher G Tate,et al.  Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein , 2018, bioRxiv.

[247]  W. Jahnke,et al.  NMR reporter screening for the detection of high-affinity ligands. , 2002, Angewandte Chemie.

[248]  A Beteva,et al.  High-throughput sample handling and data collection at synchrotrons: embedding the ESRF into the high-throughput gene-to-structure pipeline. , 2006, Acta crystallographica. Section D, Biological crystallography.

[249]  J. Dubochet,et al.  Cryo-electron microscopy of viruses , 1984, Nature.

[250]  J. Harris,et al.  Preparation of thin-film frozen-hydrated/vitrified biological specimens for cryoelectron microscopy. , 1999, Methods in molecular biology.

[251]  Muyuan Chen,et al.  High resolution single particle refinement in EMAN2.1. , 2016, Methods.

[252]  Wei Huang,et al.  Cryo-EM structure of 5-HT3A receptor in its resting conformation , 2018, Nature Communications.

[253]  Gabriel C. Lander,et al.  Achieving better than 3 Å resolution by single particle cryo-EM at 200 keV , 2017 .

[254]  S. Sligar,et al.  Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. , 2007, Biochemistry.

[255]  D. Eisenberg Max Perutz's achievements: How did he do it? , 1994, Protein science : a publication of the Protein Society.

[256]  J. Lieberman,et al.  Cryo-EM structure of the gasdermin A3 membrane pore , 2018, Nature.

[257]  S. Almo,et al.  X-ray crystallography over the past decade for novel drug discovery – where are we heading next? , 2015, Expert Opinion on Drug Discovery.

[258]  Bernd Meyer,et al.  Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy. , 1999, Angewandte Chemie.

[259]  Cryo-EM shows how dynactin recruits two dyneins for faster movement , 2017, bioRxiv.

[260]  S. Harrison,et al.  Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction , 2008, Proceedings of the National Academy of Sciences.

[261]  Peter B. Rosenthal,et al.  Cryomicroscopy of radiation sensitive specimens on unmodified graphene sheets: Reduction of electron-optical effects of charging☆ , 2013, Journal of structural biology.

[262]  R. Aebersold,et al.  Structural basis of AAUAAA polyadenylation signal recognition by the human CPSF complex , 2018, Nature Structural & Molecular Biology.

[263]  E. Orlova,et al.  Structural Analysis of Macromolecular Assemblies by Electron Microscopy , 2011, Chemical reviews.

[264]  M. Washburn,et al.  Mediator structure and rearrangements required for holoenzyme formation , 2017, Nature.

[265]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[266]  Wolfgang Baumeister,et al.  Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. , 2010, Journal of structural biology.

[267]  Harren Jhoti,et al.  Twenty years on: the impact of fragments on drug discovery , 2016, Nature Reviews Drug Discovery.

[268]  D. Sabatini,et al.  Architecture of the human GATOR1 and GATOR1–Rag GTPases complexes , 2018, Nature.

[269]  E. Baker,et al.  Structure of Rhombohedral 2 Zinc Insulin Crystals , 1969, Nature.

[270]  G. Schröder,et al.  Fibril structure of amyloid-β(1–42) by cryo–electron microscopy , 2017, Science.

[271]  J. Porta,et al.  Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity , 2015, Proceedings of the National Academy of Sciences.

[272]  Richard R. Ernst,et al.  Sensitivity Enhancement in Magnetic Resonance , 1966 .

[273]  Joachim Frank,et al.  SPIDER—A modular software system for electron image processing , 1981 .

[274]  J. Dubochet,et al.  Frozen aqueous suspensions , 1982 .

[275]  Magnetic resonance in chemistry and biology : based on lectures at the Ampère International Summer School on Magnetic Resonance in Chemistry and Biology, Baško Polje, Yugoslavia, June 1971 , 1975 .

[276]  R. Meijers,et al.  Optimization of protein purification and characterization using Thermofluor screens. , 2013, Protein expression and purification.

[277]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.

[278]  M. Rossmann,et al.  Antibody-induced uncoating of human rhinovirus B14 , 2017, Proceedings of the National Academy of Sciences.

[279]  Gongpu Zhao,et al.  The atomic structure of a eukaryotic oligosaccharyltransferase complex. , 2018 .

[280]  P. Hajduk,et al.  Discovering High-Affinity Ligands for Proteins: SAR by NMR , 1996, Science.

[281]  Michael Schatz,et al.  Four-Dimensional Cryo Electron Microscopy at Quasi Atomic Resolution: "IMAGIC 4D" , 2012 .

[282]  D. J. De Rosier,et al.  Reconstruction of Three Dimensional Structures from Electron Micrographs , 1968, Nature.

[283]  R. Glaeser,et al.  Opinion: hazards faced by macromolecules when confined to thin aqueous films , 2016, Biophysics reports.

[284]  E. Nogales,et al.  Cryo-EM structures of PRC2 simultaneously engaged with two functionally distinct nucleosomes , 2018, Nature Structural & Molecular Biology.

[285]  R. Agrawal,et al.  Initial bridges between two ribosomal subunits are formed within 9.4 milliseconds, as studied by time-resolved cryo-EM , 2014, Proceedings of the National Academy of Sciences.

[286]  Yigong Shi,et al.  Structure of a yeast spliceosome at 3.6-angstrom resolution , 2015, Science.

[287]  A. Renslo,et al.  Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule , 2017, Science.

[288]  Wolfgang Jahnke,et al.  Spin Labels as a Tool to Identify and Characterize Protein–Ligand Interactions by NMR Spectroscopy , 2002, Chembiochem : a European journal of chemical biology.

[289]  Roderick MacKinnon,et al.  Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism , 2016, Science.

[290]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[291]  M. F. Smith,et al.  Quantitative energy-filtered electron microscopy of biological molecules in ice. , 1992, Ultramicroscopy.

[292]  Michael G. Rossmann,et al.  The 3.8 angstrom resolution cryo-EM structure of Zika virus. , 2016 .

[293]  Joachim Frank,et al.  Advances in the field of single-particle cryo-electron microscopy over the last decade , 2017, Nature Protocols.

[294]  Todd O. Yeates,et al.  Near-Atomic Cryo-EM Imaging of a Small Protein Displayed on a Designed Scaffolding System , 2017 .

[295]  D. Clapham,et al.  The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs , 2016, Cell.

[296]  Joachim Frank,et al.  A Fast and Effective Microfluidic Spraying-Plunging Method for High-Resolution Single-Particle Cryo-EM. , 2017, Structure.

[297]  L. Hardy,et al.  The impact of structure-guided drug design on clinical agents , 2003 .

[298]  Joseph H. Davis,et al.  Addressing preferred specimen orientation in single-particle cryo-EM through tilting , 2017, Nature Methods.

[299]  Tudor I. Oprea,et al.  A comprehensive map of molecular drug targets , 2016, Nature Reviews Drug Discovery.

[300]  Justin M Kollman,et al.  Vitrification after multiple rounds of sample application and blotting improves particle density on cryo-electron microscopy grids , 2016, bioRxiv.

[301]  Nikolaus Grigorieff,et al.  FREALIGN: high-resolution refinement of single particle structures. , 2007, Journal of structural biology.

[302]  J J Baldwin,et al.  Carbonic anhydrase inhibitors for the treatment of glaucoma , 2023, Медицинская этика.

[303]  Christopher Irving,et al.  Appion: an integrated, database-driven pipeline to facilitate EM image processing. , 2009, Journal of structural biology.

[304]  Thomas Earnest,et al.  Automation of X-ray crystallography , 2000, Nature Structural Biology.

[305]  Klaus Schulten,et al.  Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps , 2016, eLife.

[306]  X. Bai,et al.  Structure of mammalian endolysosomal TRPML1 channel in nanodiscs , 2017, Nature.

[307]  W. Baumeister,et al.  Volta potential phase plate for in-focus phase contrast transmission electron microscopy , 2014, Proceedings of the National Academy of Sciences.

[308]  F. Zernike How I discovered phase contrast. , 1955, Science.

[309]  Jianping Wu,et al.  Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution , 2017, Science.