Ockham's Razor at Work: Modeling of the ``Homunculus''

There is a broad consensus about the fundamental role of thehippocampal system (hippocampus and its adjacent areas) in theencoding and retrieval of episodic memories. This paper presents afunctional model of this system. Although memory is not asingle-unit cognitive function, we took the view that the wholesystem of the smooth, interrelated memory processes may have acommon basis. That is why we follow the Ockham's razor principleand minimize the size or complexity of our model assumption set.The fundamental assumption is the requirement of solving the socalled ``homunculus fallacy'', which addresses the issue ofinterpreting the input. Generative autoassociators seem to offer aresolution of the paradox. Learning to represent and to recallinformation, in these generative networks, imply maximization ofinformation transfer, sparse representation and noveltyrecognition. A connectionist architecture, which integrates theseaspects as model constraints, is derived. Numerical studiesdemonstrate the novelty recognition and noise filtering propertiesof the architecture. Finally, we conclude that the derivedconnectionist architecture can be related to the neurobiologicalsubstrate.

[1]  J. Lisman Relating Hippocampal Circuitry to Function Recall of Memory Sequences by Reciprocal Dentate–CA3 Interactions , 1999, Neuron.

[2]  Matthew Brand,et al.  Voice puppetry , 1999, SIGGRAPH.

[3]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[4]  Lucas C. Parra,et al.  Statistical Independence and Novelty Detection with Information Preserving Nonlinear Maps , 1996, Neural Computation.

[5]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[6]  A. Lörincz,et al.  Physiological patterns in the hippocampo‐entorhinal cortex system , 2000, Hippocampus.

[7]  T. Shallice,et al.  Recollection and Familiarity in Recognition Memory: An Event-Related Functional Magnetic Resonance Imaging Study , 1999, The Journal of Neuroscience.

[8]  D. Henze,et al.  Dendritic morphology and its effects on the amplitude and rise‐time of synaptic signals in hippocampal CA3 pyramidal cells , 1996, The Journal of comparative neurology.

[9]  S. Harnad Psychophysical and cognitive aspects of categorical perception: A critical overview , 1987 .

[10]  D Charles,et al.  Modelling multiple-cause structure using rectification constraints. , 1998, Network.

[11]  E. Tulving Elements of episodic memory , 1983 .

[12]  Stefano Panzeri,et al.  Firing Rate Distributions and Efficiency of Information Transmission of Inferior Temporal Cortex Neurons to Natural Visual Stimuli , 1999, Neural Computation.

[13]  Berthold K. P. Horn Understanding Image Intensities , 1977, Artif. Intell..

[14]  D. Schacter Implicit memory: History and current status. , 1987 .

[15]  L. Squire,et al.  Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. , 1980, Science.

[16]  J. Atick,et al.  Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus , 1995 .

[17]  S. Mallat A wavelet tour of signal processing , 1998 .

[19]  Stephen Chak Tornay Ockham: studies and selections, , 1938 .

[20]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[21]  András Lörincz,et al.  Sign-changing filters similar to cells in primary visual cortex emerge by independent component analysis of temporally convolved natural image sequences , 2001, Neurocomputing.

[22]  L. Squire Declarative and Nondeclarative Memory: Multiple Brain Systems Supporting Learning and Memory , 1992, Journal of Cognitive Neuroscience.

[23]  S. Hochreiter,et al.  Lococode Performs Nonlinear ICA Without Knowing The Number Of Sources , 1999 .

[24]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  András Lörincz,et al.  Computational model of the entorhinal-hippocampal region derived from a single principle , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[26]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[27]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[28]  Stephen Grossberg,et al.  Competitive Learning: From Interactive Activation to Adaptive Resonance , 1987, Cogn. Sci..

[29]  Erkki Oja,et al.  A class of neural networks for independent component analysis , 1997, IEEE Trans. Neural Networks.

[30]  G. Orban,et al.  Neuronal Mechanisms of Perceptual Learning: Changes in Human Brain Activity with Training in Orientation Discrimination , 1999, NeuroImage.

[31]  Erkki Oja,et al.  Sparse Code Shrinkage: Denoising by Nonlinear Maximum Likelihood Estimation , 1998, NIPS.

[32]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[33]  S. Grossberg,et al.  Normal and amnesic learning, recognition and memory by a neural model of cortico-hippocampal interactions , 1993, Trends in Neurosciences.

[34]  Günther Palm,et al.  On the Information Storage Capacity of Local Learning Rules , 1992, Neural Computation.

[35]  S. Roberts Novelty detection using extreme value statistics , 1999 .

[36]  Malcolm W. Brown,et al.  Different Contributions of the Hippocampus and Perirhinal Cortex to Recognition Memory , 1999, The Journal of Neuroscience.

[37]  B. Olshausen Learning linear, sparse, factorial codes , 1996 .

[38]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: Part 2. The contextual enhancement effect and some tests and extensions of the model. , 1982, Psychological review.

[39]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[40]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[41]  András Lörincz,et al.  Recognition of Novelty Made Easy: Constraints of Channel Capacity on Generative Networks , 2000, NCPW.

[42]  W B Levy,et al.  A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal‐like tasks , 1996, Hippocampus.

[43]  H. Eichenbaum A cortical–hippocampal system for declarative memory , 2000, Nature Reviews Neuroscience.

[44]  J. O’Keefe,et al.  Neuronal computations underlying the firing of place cells and their role in navigation , 1996, Hippocampus.

[45]  H. Eichenbaum,et al.  Memory, amnesia, and the hippocampal system , 1993 .

[46]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[47]  Kenneth R. Livingston,et al.  Categorical Perception Effects Induced by Category Learning , 1998 .

[48]  L. Squire Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. , 1992, Psychological review.

[49]  Jorma Rissanen,et al.  Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.

[50]  J. Karhunen,et al.  Neural Estimation of Basis Vectors in Independent Component Analysis , 1995 .

[51]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[52]  Neri Merhav,et al.  Universal Prediction , 1998, IEEE Trans. Inf. Theory.

[53]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[54]  G. Buzsáki Feed-forward inhibition in the hippocampal formation , 1984, Progress in Neurobiology.

[55]  M. Mozer Discovering Discrete Distributed Representations with Iterative Competitive Learning , 1990, NIPS 1990.

[56]  Geoffrey E. Hinton,et al.  Generative models for discovering sparse distributed representations. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[57]  András Lörincz Towards a unified model of cortical computation II: From control architecture to a model of consciousness , 1997 .

[58]  E. Kandel,et al.  Memory: From Mind to Molecules , 1999 .

[59]  S. J. Martin,et al.  Reversible neural inactivation reveals hippocampal participation in several memory processes , 1999, Nature Neuroscience.

[60]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[61]  R. Clark,et al.  Classical conditioning and brain systems: the role of awareness. , 1998, Science.

[62]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[63]  H. Saunders,et al.  Probability, Random Variables and Stochastic Processes (2nd Edition) , 1989 .

[64]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[65]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[66]  Peter Földiák,et al.  SPARSE CODING IN THE PRIMATE CORTEX , 2002 .

[67]  Geoffrey E. Hinton,et al.  Autoencoders, Minimum Description Length and Helmholtz Free Energy , 1993, NIPS.

[68]  T. Poggio,et al.  Predicting the visual world: silence is golden , 1999, Nature Neuroscience.

[69]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[70]  András Lörincz,et al.  Independent Component Analysis of Temporal Sequences Subject to Constraints by Lateral Geniculate Nucleus Inputs Yields All the Three Major Cell Types of the Primary Visual Cortex , 2001, Journal of Computational Neuroscience.

[71]  H. Eichenbaum,et al.  Two functional components of the hippocampal memory system , 1994, Behavioral and Brain Sciences.

[72]  Geoffrey E. Hinton,et al.  Parameter estimation for linear dynamical systems , 1996 .

[73]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[74]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[75]  E. Oja,et al.  Independent Component Analysis , 2013 .

[76]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[77]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: I. An account of basic findings. , 1981 .

[78]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[79]  J E Lisman,et al.  Storage of 7 +/- 2 short-term memories in oscillatory subcycles , 1995, Science.

[80]  A. Lörincz,et al.  Two‐Phase Computational Model Training Long‐Term Memories in the Entorhinal‐Hippocampal Region , 2000, Annals of the New York Academy of Sciences.

[81]  Guy A. Orban,et al.  Orientation discrimination of motion-defined gratings , 1994, Vision Research.

[82]  Rajesh P. N. Rao,et al.  Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex , 1997, Neural Computation.

[83]  D. Ruderman,et al.  Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[84]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[85]  Roland Baddeley,et al.  An efficient code in V1? , 1996, Nature.

[86]  D. Jaffe,et al.  Passive normalization of synaptic integration influenced by dendritic architecture. , 1999, Journal of neurophysiology.

[87]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.

[88]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[89]  J. Leo van Hemmen,et al.  Development of spatiotemporal receptive fields of simple cells: I. Model formulation , 1997, Biological Cybernetics.

[90]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[91]  Petteri Pajunen,et al.  Blind source separation using algorithmic information theory , 1998, Neurocomputing.

[92]  Geoffrey E. Hinton,et al.  OPTIMAL PERCEPTUAL INFERENCE , 1983 .

[93]  András Lörincz,et al.  Forming independent components via temporal locking of reconstruction architectures: a functional model of the hippocampus , 1998, Biological Cybernetics.

[94]  Peter Dayan,et al.  Competition and Multiple Cause Models , 1995, Neural Comput..

[95]  P. Földiák,et al.  Forming sparse representations by local anti-Hebbian learning , 1990, Biological Cybernetics.

[96]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[97]  Geoffrey E. Hinton,et al.  Learning Population Codes by Minimizing Description Length , 1993, Neural Computation.

[98]  W. Scoville,et al.  LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS , 1957, Journal of neurology, neurosurgery, and psychiatry.

[99]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[100]  Alexander Gammerman,et al.  Complexity Approximation Principle , 1999, Comput. J..