Global Modeling of Land Water and Energy Balances. Part I: The Land Dynamics (LaD) Model

Abstract A simple model of large-scale land (continental) water and energy balances is presented. The model is an extension of an earlier scheme with a record of successful application in climate modeling. The most important changes from the original model include 1) introduction of non-water-stressed stomatal control of transpiration, in order to correct a tendency toward excessive evaporation; 2) conversion from globally constant parameters (with the exception of vegetation-dependent snow-free surface albedo) to more complete vegetation and soil dependence of all parameters, in order to provide more realistic representation of geographic variations in water and energy balances and to enable model-based investigations of land-cover change; 3) introduction of soil sensible heat storage and transport, in order to move toward realistic diurnal-cycle modeling; 4) a groundwater (saturated-zone) storage reservoir, in order to provide more realistic temporal variability of runoff; and 5) a rudimentary runoff-ro...

[1]  P. Milly,et al.  Global Modeling of Land Water and Energy Balances. Part III: Interannual Variability , 2002 .

[2]  P. Milly,et al.  Global Modeling of Land Water and Energy Balances. Part II: Land-Characteristic Contributions to Spatial Variability , 2002 .

[3]  Zong-Liang Yang,et al.  Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS phase 2(d). , 2000 .

[4]  Taikan Oki,et al.  Assessment of Annual Runoff from Land Surface Models Using Total Runoff Integrating Pathways (TRIP) , 1999 .

[5]  Robert E. Dickinson,et al.  The role of root distribution for climate simulation over land , 1998 .

[6]  Axel Kleidon,et al.  Optimised rooting depth and its impacts on the simulated climate of an atmospheric general circulation model , 1998 .

[7]  Marcos Heil Costa,et al.  Water balance of the Amazon Basin: Dependence on vegetation cover and canopy conductance , 1997 .

[8]  S. Manabe,et al.  Transient response of a coupled model to estimated changes in greenhouse gas and sulfate concentrations , 1997 .

[9]  R. B. Jackson,et al.  A global analysis of root distributions for terrestrial biomes , 1996, Oecologia.

[10]  Dag Lohmann,et al.  A large‐scale horizontal routing model to be coupled to land surface parametrization schemes , 1996 .

[11]  Cort J. Willmott,et al.  GLOBAL DISTRIBUTION OF PLANT‐EXTRACTABLE WATER CAPACITY OF SOIL , 1996 .

[12]  M. Coe,et al.  Hydrologic budget of a land surface model: A global application , 1996 .

[13]  D. Randall,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation , 1996 .

[14]  G. J. Collatz,et al.  Comparison of Radiative and Physiological Effects of Doubled Atmospheric CO2 on Climate , 1996, Science.

[15]  A. Henderson‐sellers,et al.  Sensitivity of global climate model simulations to increased stomatal resistance and CO2 increases , 1995 .

[16]  E. Davidson,et al.  The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures , 1994, Nature.

[17]  P. Milly Climate, soil water storage, and the average annual water balance , 1994 .

[18]  M. C. MacCracken,et al.  The U.S. Global Change Research Program , 1994 .

[19]  P. Milly,et al.  Sensitivity of the Global Water Cycle to the Water-Holding Capacity of Land , 1994 .

[20]  R. Dickinson,et al.  The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3 , 1993 .

[21]  P. Milly Potential evaporation and soil moisture in general circulation models , 1992 .

[22]  Syukuro Manabe,et al.  The Influence of Soil Wetness on Near-Surface Atmospheric Variability , 1989 .

[23]  Piers J. Sellers,et al.  A Global Climatology of Albedo, Roughness Length and Stomatal Resistance for Atmospheric General Circulation Models as Represented by the Simple Biosphere Model (SiB) , 1989 .

[24]  A. Dalcher,et al.  A Simple Biosphere Model (SIB) for Use within General Circulation Models , 1986 .

[25]  P. Milly,et al.  A Simulation Analysis of Thermal Effects on Evaporation From Soil , 1984 .

[26]  E. Matthews Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies , 1983 .

[27]  H. E. Jobson Evaporation Into the Atmosphere: Theory, History, and Applications , 1982 .

[28]  Peter S. Eagleson,et al.  Climate, soil, and vegetation: 3. A simplified model of soil moisture movement in the liquid phase , 1978 .

[29]  M. Budyko,et al.  Climate and life , 1975 .

[30]  S. Manabe CLIMATE AND THE OCEAN CIRCULATION1 , 1969 .

[31]  W. R. Gardner,et al.  The Prediction of Evaporation, Drainage, and Soil Water Storage for a Bare Soil , 1969 .

[32]  S. El‐Swaify,et al.  Evaluating the Use of Na+, Ca2+, and Divalent Cation Electrodes in Some Soil Extracting Solutions 1 , 1969 .

[33]  R. Ward,et al.  Principles of Hydrology , 1968 .

[34]  CLIMATE AND THE OCEAN CIRCULATION’ 1. THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE , 2004 .

[35]  D. Randall,et al.  Simulations of Soil Moisture and Surface Water Balance Using the Simple Biosphere Model 2 , 1999 .

[36]  R. Dickinson,et al.  The Project for Intercomparison of Land-surface Parameterization Schemes PILPS phase 2 c Red–Arkansas River basin experiment: 3. Spatial and temporal analysis of water fluxes , 1998 .

[37]  R. Dickinson,et al.  The Project for Intercomparison of Land-surface Parameterization Schemes PILPS Phase 2 c Red–Arkansas River basin experiment: 1. Experiment description and summary intercomparisons , 1998 .

[38]  T. Oki,et al.  Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network , 1998 .

[39]  G. Energy GCIP : global energy and water cycle experiment (GEWEX), continental-scale international project : a review of progress and opportunities , 1998 .

[40]  Gusev,et al.  Cabauw Experimental Results from the Project for Intercomparison of Land-Surface Parameterization Schemes , 1997 .

[41]  Wilfried Brutsaert,et al.  Evaporation into the atmosphere : theory, history, and applications , 1982 .

[42]  R. Wolski,et al.  Boundary Subroutine for the NCAR Global Climate Model , 1981 .

[43]  D. Hillel Applications of soil physics , 1980 .

[44]  T. Books The Times Atlas of the World , 1975 .