Double-sampling control charts for attributes

In this article, we propose a double-sampling (DS) np control chart. We assume that the time interval between samples is fixed. The choice of the design parameters of the proposed chart and also comparisons between charts are based on statistical properties, such as the average number of samples until a signal. The optimal design parameters of the proposed control chart are obtained. During the optimization procedure, constraints are imposed on the in-control average sample size and on the in-control average run length. In this way, required statistical properties can be assured. Varying some input parameters, the proposed DS np chart is compared with the single-sampling np chart, variable sample size np chart, CUSUM np and EWMA np charts. The comparisons are carried out considering the optimal design for each chart. For the ranges of parameters considered, the DS scheme is the fastest one for the detection of increases of 100% or more in the fraction non-conforming and, moreover, the DS np chart is easy to operate.

[1]  Eugenio K. Epprecht,et al.  Adaptive Control Charts for Attributes , 2003 .

[2]  Fah Fatt Gan,et al.  Monitoring observations generated from a binomial distribution using modified exponentially weighted moving average control chart , 1990 .

[3]  Antonio Fernando Branco Costa,et al.  X̄ Charts with Variable Parameters , 1999 .

[4]  Patrick Bourke,et al.  Ewma Control Charts Using Attributes Data , 1993 .

[5]  Lie-Fern Hsu Note on ‘Design of double- and triple-sampling X-bar control charts using genetic algorithms’ , 2004 .

[6]  J. Daudin,et al.  Double Sampling Charts , 1992 .

[7]  Eugenio K. Epprecht,et al.  ADAPTIVE SAMPLE SIZE CONTROL CHARTS FOR ATTRIBUTES , 2001 .

[8]  Zhang Wu,et al.  Implementing Synthetic Control Charts for Attributes , 2001 .

[9]  Douglas C. Montgomery,et al.  A note on the average run length of cumulative sum control charts for count data , 1987 .

[10]  Timothy S. Vaughan,et al.  Variable sampling interval np process control chart , 1992 .

[11]  Changsoon Park,et al.  Economic design of a variable sample size -chart , 1994 .

[12]  Eugenio K. Epprecht,et al.  Constrained optimization model for the design of an adaptive X chart , 2002 .

[13]  James M. Lucas,et al.  Counted Data CUSUM's , 1985 .

[14]  Patrick D. Bourke,et al.  The geometric CUSUM chart with sampling inspection for monitoring fraction defective , 2001 .

[15]  Zhang Wu,et al.  Optimal np control chart with curtailment , 2006, Eur. J. Oper. Res..

[16]  Antonio Fernando Branco Costa VSSI X̄ charts with sampling at fixed times , 1998 .

[17]  P. Croasdale,et al.  Control Charts for a Double-Sampling Scheme Based on Average Production Run Lengths , 1974 .

[18]  William H. Woodall,et al.  Control Charts Based on Attribute Data: Bibliography and Review , 1997 .

[19]  Maysa S. De Magalhães,et al.  Joint economic model for totally adaptive X and R charts , 2005, Eur. J. Oper. Res..

[20]  Antonio Fernando Branco Costa,et al.  X charts with supplementary samples to control the mean and variance , 2000 .

[21]  Lajos Horváth The limit distributions of likelihood ratio and cumulative sum tests for a change in a binomial probability , 1989 .

[22]  Zhang Wu,et al.  An NP Control Chart Using Double Inspections , 2007 .

[23]  Changsoon Park,et al.  Economic Design of a Variable Sampling Rate X-bar Chart , 1999 .

[24]  Stefan H. Steiner Confirmation sample control charts , 1999 .

[25]  Connie M. Borror,et al.  Poisson EWMA Control Charts , 1998 .

[26]  Antonio Fernando Branco Costa,et al.  X̄ Chart with Variable Sample Size and Sampling Intervals , 1997 .

[27]  Douglas C. Montgomery,et al.  Economic-statistical design of an adaptive chart , 1997 .

[28]  J. B. Keats,et al.  X¯ chart with adaptive sample sizes , 1993 .

[29]  Antonio Fernando Branco Costa,et al.  Joint ―X and R Charts with Two‐stage Samplings , 2004 .

[30]  Thong Ngee Goh,et al.  A two-stage decision procedure for monitoring processes with low fraction nonconforming , 2003, Eur. J. Oper. Res..

[31]  Jean-Jacques Daudin,et al.  Double sampling X charts , 1992 .

[32]  Wu Zhang,et al.  Optimal np Control Charts with Variable Sample Sizes or Variable Sampling Intervals , 2002 .

[33]  D. A. Evans,et al.  An approach to the probability distribution of cusum run length , 1972 .

[34]  J. A. Nachlas,et al.  X charts with variable sampling intervals , 1988 .

[35]  Patrick D. Bourke,et al.  Detecting a shift in fraction nonconforming using runlength control charts with 100% inspection , 1991 .

[36]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[37]  James M. Lucas,et al.  Fast Initial Response for CUSUM Quality-Control Schemes: Give Your CUSUM A Head Start , 2000, Technometrics.

[38]  Zachary G. Stoumbos,et al.  A CUSUM Chart for Monitoring a Proportion When Inspecting Continuously , 1999 .

[39]  A. F. Bissell Control chart limits for attributes and events , 1988 .

[40]  D. Montgomery,et al.  A Combined Adaptive Sample Size and Sampling Interval X Control Scheme , 1994 .

[41]  Trevor A Spedding,et al.  A Synthetic Control Chart for Detecting Fraction Nonconforming Increases , 2001 .

[42]  Fah Fatt Gan,et al.  Monitoring Poisson observations using modified exponentially weighted moving average control charts , 1990 .

[43]  Fah Fatt Gan,et al.  An optimal design of CUSUM control charts for binomial counts , 1993 .

[44]  Antonio Fernando Branco Costa,et al.  X̄ charts with variable sample size , 1994 .

[45]  Lie-Fern Hsu Note on 'Construction of Double Sampling s-Control Charts for Agile Manufacturing' , 2007, Qual. Reliab. Eng. Int..