Computational Design of Functionalized Metal–Organic Framework Nodes for Catalysis

Recent progress in the synthesis and characterization of metal–organic frameworks (MOFs) has opened the door to an increasing number of possible catalytic applications. The great versatility of MOFs creates a large chemical space, whose thorough experimental examination becomes practically impossible. Therefore, computational modeling is a key tool to support, rationalize, and guide experimental efforts. In this outlook we survey the main methodologies employed to model MOFs for catalysis, and we review selected recent studies on the functionalization of their nodes. We pay special attention to catalytic applications involving natural gas conversion.

[1]  M. A. Ortuño,et al.  Computational Study of First-Row Transition Metals Supported on MOF NU-1000 for Catalytic Acceptorless Alcohol Dehydrogenation , 2016 .

[2]  Justin M. Notestein,et al.  Stable Metal-Organic Framework-Supported Niobium Catalysts. , 2016, Inorganic chemistry.

[3]  D. Troya,et al.  Reaction Mechanism of Nerve-Agent Decomposition with Zr-Based Metal Organic Frameworks , 2016 .

[4]  J. Hupp,et al.  Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks , 2017 .

[5]  M. Stamatakis Kinetic modelling of heterogeneous catalytic systems , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  C. Cramer,et al.  Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. , 2011, The journal of physical chemistry. B.

[7]  Rachel B. Getman,et al.  Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. , 2012, Chemical reviews.

[8]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[9]  H. Duan,et al.  Diffusion-Controlled Rotation of Triptycene in a Metal–Organic Framework (MOF) Sheds Light on the Viscosity of MOF-Confined Solvent , 2016, ACS central science.

[10]  Joachim Sauer,et al.  Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal-Organic Frameworks. , 2016, Journal of the American Chemical Society.

[11]  M. A. Ortuño,et al.  Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature , 2016, ACS central science.

[12]  Joshua Borycz,et al.  Defining the Proton Topology of the Zr6-Based Metal-Organic Framework NU-1000. , 2014, The journal of physical chemistry letters.

[13]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[14]  De-Li Chen,et al.  Ab Initio Molecular Dynamic Simulations on Pd Clusters Confined in UiO-66-NH2 , 2017 .

[15]  D. Sholl,et al.  Synthesis, Characterization, and Computation of Catalysts at the Center for Atomic-Level Catalyst Design , 2014 .

[16]  A. Voter Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events , 1997 .

[17]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[18]  Jack D. Evans,et al.  Computational Chemistry Methods for Nanoporous Materials , 2017 .

[19]  H. Hirao,et al.  Hybrid computational approaches for deriving quantum mechanical insights into metal–organic frameworks , 2017 .

[20]  M. Vandichel,et al.  Active site engineering in UiO-66 type metal-organic frameworks by intentional creation of defects: a theoretical rationalization , 2015 .

[21]  Omar K Farha,et al.  Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework. , 2016, Journal of the American Chemical Society.

[22]  Franziska Schoenebeck,et al.  A Holy Grail in Chemistry: Computational Catalyst Design: Feasible or Fiction? , 2017, Accounts of chemical research.

[23]  Shubin Liu,et al.  Cavity-induced enantioselectivity reversal in a chiral metal–organic framework Brønsted acid catalyst , 2012 .

[24]  Xiao He,et al.  MN15-L: A New Local Exchange-Correlation Functional for Kohn-Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids. , 2016, Journal of chemical theory and computation.

[25]  Robert G. Bell,et al.  Advances in Theory and Their Application within the Field of Zeolite Chemistry , 2015 .

[26]  Sharon Hammes-Schiffer,et al.  Catalysts by Design: The Power of Theory. , 2017, Accounts of chemical research.

[27]  D. Truhlar,et al.  Combined Quantum Mechanical and Molecular Mechanical Methods for Calculating Potential Energy Surfaces: Tuned and Balanced Redistributed-Charge Algorithm. , 2010, Journal of chemical theory and computation.

[28]  Donald G. Truhlar,et al.  Benchmark Data for Interactions in Zeolite Model Complexes and Their Use for Assessment and Validation of Electronic Structure Methods , 2008 .

[29]  Š. Vajda,et al.  Catalysis Applications of Size-Selected Cluster Deposition , 2015 .

[30]  J. Hupp,et al.  Tuning Zr6 Metal–Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts , 2016 .

[31]  M. A. Ortuño,et al.  C–H Bond Activation on Bimetallic Two-Atom Co-M Oxide Clusters Deposited on Zr-Based MOF Nodes: Effects of Doping at the Molecular Level , 2018 .

[32]  P. D. Patel,et al.  A density functional theory study of ethylene epoxidation catalyzed by niobium-doped silica , 2016 .

[33]  Jacques G. Amar,et al.  Accelerated molecular dynamics methods: introduction and recent developments , 2009 .

[34]  Rachel B. Getman,et al.  DFT‐Based Coverage‐Dependent Model of Pt‐Catalyzed NO Oxidation , 2010 .

[35]  Dawei Feng,et al.  Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. , 2012, Angewandte Chemie.

[36]  H. R. Moon,et al.  Fabrication of metal nanoparticles in metal-organic frameworks. , 2013, Chemical Society reviews.

[37]  J. Hupp,et al.  Catalytically Active Silicon Oxide Nanoclusters Stabilized in a Metal-Organic Framework. , 2017, Chemistry.

[38]  Nicolaas A. Vermeulen,et al.  A metal–organic framework immobilised iridium pincer complex† †Electronic supplementary information (ESI) available: Detailed experimental procedures. CCDC 1465323. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc01376g , 2016, Chemical science.

[39]  Yang Song,et al.  Single-Site Cobalt Catalysts at New Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 Metal-Organic Framework Nodes for Highly Active Hydrogenation of Nitroarenes, Nitriles, and Isocyanides. , 2017, Journal of the American Chemical Society.

[40]  A. Kotarba,et al.  Computational and Experimental Investigations into N2O Decomposition over MgO Nanocrystals from Thorough Molecular Mechanism to ab initio Microkinetics , 2011 .

[41]  Kai Xu,et al.  The mechanism of an asymmetric ring-opening reaction of epoxide with amine catalyzed by a metal-organic framework: insights from combined quantum mechanics and molecular mechanics calculations. , 2017, Dalton transactions.

[42]  Timothy R. Cook,et al.  Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. , 2013, Chemical reviews.

[43]  Hans-Beat Bürgi,et al.  Definitive molecular level characterization of defects in UiO-66 crystals. , 2015, Angewandte Chemie.

[44]  O. Yaghi,et al.  Molecular Retrofitting Adapts a Metal–Organic Framework to Extreme Pressure , 2017, ACS central science.

[45]  J. Liu,et al.  Catalysis by Supported Single Metal Atoms , 2016, Microscopy and Microanalysis.

[46]  Donald G Truhlar,et al.  Density functional theory for transition metals and transition metal chemistry. , 2009, Physical chemistry chemical physics : PCCP.

[47]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[48]  Marco Taddei,et al.  When defects turn into virtues: the curious case of zirconium-based metal-organic frameworks , 2017 .

[49]  B. Gates Supported Metal Clusters: Synthesis, Structure, and Catalysis , 1995 .

[50]  Ashlee J Howarth,et al.  Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications. , 2017, Accounts of chemical research.

[51]  B. L. Mehdi,et al.  Bridging Zirconia Nodes within a Metal-Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires. , 2017, Journal of the American Chemical Society.

[52]  Qiang Zhang,et al.  Flexible Zirconium Metal-Organic Frameworks as Bioinspired Switchable Catalysts. , 2016, Angewandte Chemie.

[53]  Donald G Truhlar,et al.  Benchmark Energetic Data in a Model System for Grubbs II Metathesis Catalysis and Their Use for the Development, Assessment, and Validation of Electronic Structure Methods. , 2009, Journal of chemical theory and computation.

[54]  H. Lischka,et al.  Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. , 2012, Chemical reviews.

[55]  M. Probst,et al.  Oxidative dehydrogenation of propane over a VO2-exchanged MCM-22 zeolite: a DFT study. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[56]  Seth M Cohen,et al.  Postsynthetic modification of metal-organic frameworks--a progress report. , 2011, Chemical Society reviews.

[57]  K. Reuter Ab Initio Thermodynamics and First-Principles Microkinetics for Surface Catalysis , 2016, Catalysis Letters.

[58]  SonBinh T. Nguyen,et al.  Vanadium-Node-Functionalized UiO-66: A Thermally Stable MOF- Supported Catalyst for the Gas-Phase Oxidative Dehydrogenation of Cyclohexene , 2014 .

[59]  D. Truhlar,et al.  Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc). , 2015, Journal of the American Chemical Society.

[60]  Avelino Corma,et al.  Heterogeneous Catalysis: Understanding for Designing, and Designing for Applications. , 2016, Angewandte Chemie.

[61]  Haoyu S. Yu,et al.  Density Functional Theory of the Water Splitting Reaction on Fe(0): Comparison of Local and Nonlocal Correlation Functionals , 2015 .

[62]  L. Broadbelt,et al.  Microkinetic modeling of CO2 hydrolysis over Zn-(1,4,7,10-tetraazacyclododecane) catalyst based on first principles: Revelation of rate-determining step , 2014 .

[63]  B. C. Garrett,et al.  Variational Transition State Theory , 1980 .

[64]  Duilio Cascio,et al.  Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. , 2012, Inorganic chemistry.

[65]  Rebecca K. Carlson,et al.  Computationally Guided Discovery of a Catalytic Cobalt-Decorated Metal–Organic Framework for Ethylene Dimerization , 2016 .

[66]  C. Cramer,et al.  Molecular Rhodium Complexes Supported on the Metal-Oxide-Like Nodes of Metal Organic Frameworks and on Zeolite HY: Catalysts for Ethylene Hydrogenation and Dimerization. , 2017, ACS applied materials & interfaces.

[67]  M. A. Ortuño,et al.  Computational Screening of Bimetal-Functionalized Zr6O8 MOF Nodes for Methane C-H Bond Activation. , 2017, Inorganic chemistry.

[68]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[69]  Donald G Truhlar,et al.  Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems. , 2017, Accounts of chemical research.

[70]  Paul J. Dauenhauer,et al.  Kinetic Regime Change in the Tandem Dehydrative Aromatization of Furan Diels–Alder Products , 2015 .

[71]  R. Fischer,et al.  Metal–organic frameworks as hosts for nanoparticles , 2015 .

[72]  Omar K Farha,et al.  Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal-Organic Framework via Atomic Layer Deposition. , 2015, ACS nano.

[73]  Haoyu S. Yu,et al.  Calcium Vapor Adsorption on the Metal–Organic Framework NU-1000: Structure and Energetics , 2016 .

[74]  S. Bureekaew,et al.  Multiscale Model for a Metal–Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74 , 2015 .

[75]  Hong Yang,et al.  Platinum-based oxygen reduction electrocatalysts. , 2013, Accounts of chemical research.

[76]  Benjamin A. Ellingson,et al.  Variational Transition State Theory with Multidimensional Tunneling , 2007 .

[77]  S. Ha,et al.  Hydrogen Oxidation and Water Dissociation over an Oxygen-Enriched Ni/YSZ Electrode in the Presence of an Electric Field: A First-Principles-Based Microkinetic Model , 2017 .

[78]  Donald G Truhlar,et al.  Tests of the RPBE, revPBE, tau-HCTHhyb, omegaB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. , 2010, The Journal of chemical physics.

[79]  V. V. Speybroeck,et al.  Water coordination and dehydration processes in defective UiO-66 type metal organic frameworks , 2016 .

[80]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[81]  A. Yazaydin,et al.  A combined experimental and quantum chemical study of CO2 adsorption in the metal–organic framework CPO-27 with different metals , 2013 .

[82]  M. Head‐Gordon,et al.  Assessing electronic structure approaches for gas-ligand interactions in metal-organic frameworks: the CO2-benzene complex. , 2014, The Journal of chemical physics.

[83]  P. Serna,et al.  A bifunctional mechanism for ethene dimerization: catalysis by rhodium complexes on zeolite HY in the absence of halides. , 2011, Angewandte Chemie.

[84]  D. Vos,et al.  Metal–organic frameworks as catalysts: the role of metal active sites , 2013 .

[85]  C. H. J. Wells Oxidation of ethane , 1961 .

[86]  Arnold Weissberger,et al.  Investigation of Rates and Mechanisms of Reactions , 1974 .

[87]  C. Cramer,et al.  Aggregation of alkyllithiums in tetrahydrofuran. , 2007, Journal of Organic Chemistry.

[88]  B. L. Mehdi,et al.  Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal-Organic Framework. , 2017, Journal of the American Chemical Society.

[89]  Lei Zhu,et al.  Thiolate–palladium(IV) or sulfonium–palladate(0)? A theoretical study on the mechanism of palladium-catalyzed C–S bond formation reactions , 2017 .

[90]  Robert G. Parr,et al.  Density Functional Theory of Electronic Structure , 1996 .

[91]  T. Heine,et al.  Extension of the Universal Force Field for Metal-Organic Frameworks. , 2016, Journal of chemical theory and computation.

[92]  A. Fuchs,et al.  Computational characterization and prediction of metal-organic framework properties , 2015, 1506.08219.

[93]  Núria López,et al.  State-of-the-art and challenges in theoretical simulations of heterogeneous catalysis at the microscopic level , 2012 .

[94]  Jared B. DeCoste,et al.  Cerium(IV) vs Zirconium(IV) Based Metal–Organic Frameworks for Detoxification of a Nerve Agent , 2017 .

[95]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[96]  Yadong Li,et al.  Ionic Exchange of Metal-Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO2. , 2017, Journal of the American Chemical Society.

[97]  Glen A. Ferguson,et al.  Exploring Computational Design of Size-Specific Subnanometer Clusters Catalysts , 2012, Topics in Catalysis.

[98]  D. Sholl,et al.  Thermodynamics of Pore Filling Metal Clusters in Metal Organic Frameworks: Pd in UiO-66. , 2012, The journal of physical chemistry letters.

[99]  Athanassios D. Katsenis,et al.  Computational evaluation of metal pentazolate frameworks: inorganic analogues of azolate metal–organic frameworks , 2018, Chemical science.

[100]  N. Rösch,et al.  Hydrogen Adsorption on Small Zeolite-Supported Rhodium Clusters. A Density Functional Study , 2015 .

[101]  Aziz Ghoufi,et al.  Electrically Induced Breathing of the MIL-53(Cr) Metal–Organic Framework , 2017, ACS central science.

[102]  Seth M. Cohen The Postsynthetic Renaissance in Porous Solids. , 2017, Journal of the American Chemical Society.

[103]  Bartolomeo Civalleri,et al.  Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory , 2011 .

[104]  Michel Waroquier,et al.  Advances in theory and their application within the field of zeolite chemistry. , 2015, Chemical Society reviews.

[105]  M. Beller,et al.  Synthesis of Single Atom Based Heterogeneous Platinum Catalysts: High Selectivity and Activity for Hydrosilylation Reactions , 2017, ACS central science.

[106]  Nicolaas A. Vermeulen,et al.  A metal–organic framework immobilised iridium pincer complex , 2016 .

[107]  J. Hupp,et al.  Atomic Layer Deposition in a Metal–Organic Framework: Synthesis, Characterization, and Performance of a Solid Acid , 2017 .

[108]  F. Illas,et al.  Density functional study of CO and NO adsorption on Ni-doped MgO(100). , 2010, The Journal of chemical physics.

[109]  Emmanuel Tylianakis,et al.  Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. , 2013, Journal of the American Chemical Society.

[110]  D. J. Nelson,et al.  Olefin Metathesis by Grubbs–Hoveyda Complexes: Computational and Experimental Studies of the Mechanism and Substrate-Dependent Kinetics , 2013 .

[111]  M. Ehara,et al.  Mechanism of Ullmann Coupling Reaction of Chloroarene on Au/Pd Alloy Nanocluster: A DFT Study , 2016 .

[112]  Hai D. Pham,et al.  The mechanism of a ligand-promoted C(sp3)-H activation and arylation reaction via palladium catalysis: theoretical demonstration of a Pd(II)/Pd(IV) redox manifold. , 2015, Journal of the American Chemical Society.

[113]  T. Mondal,et al.  Exploring the Oxidative-Addition Pathways of Phenyl Chloride in the Presence of PdII Abnormal N-Heterocyclic Carbene Complexes: A DFT Study. , 2016, Chemistry.

[114]  J. Hupp,et al.  Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr6 Nodes of UiO-66 and NU-1000. , 2016, Journal of the American Chemical Society.

[115]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[116]  J. Hupp,et al.  Synthetic Access to Atomically Dispersed Metals in Metal-Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal-Exchange Approach , 2016 .

[117]  Qiang Zhang,et al.  Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks. , 2015, Angewandte Chemie.

[118]  Hong-Cai Zhou,et al.  Zr-based metal-organic frameworks: design, synthesis, structure, and applications. , 2016, Chemical Society reviews.

[119]  V. Van Speybroeck,et al.  Vibrational fingerprint of the absorption properties of UiO-type MOF materials , 2016, Theoretical Chemistry Accounts.

[120]  W. Thiel Computational catalysis--past, present, and future. , 2014, Angewandte Chemie.

[121]  B. Ganguly,et al.  Asymmetric hydrolytic kinetic resolution with recyclable polymeric Co(III)–salen complexes: a practical strategy in the preparation of (S)-metoprolol, (S)-toliprolol and (S)-alprenolol: computational rationale for enantioselectivity , 2014 .

[122]  Joachim Sauer,et al.  Size-dependent catalytic activity of supported vanadium oxide species: oxidative dehydrogenation of propane. , 2014, Journal of the American Chemical Society.

[123]  P. Serna,et al.  Molecular metal catalysts on supports: organometallic chemistry meets surface science. , 2014, Accounts of chemical research.

[124]  Haoyu S. Yu,et al.  Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics , 2017, Proceedings of the National Academy of Sciences.

[125]  Kuntal Manna,et al.  Metal-Organic Framework Nodes Support Single-Site Magnesium-Alkyl Catalysts for Hydroboration and Hydroamination Reactions. , 2016, Journal of the American Chemical Society.

[126]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[127]  A. Walsh,et al.  Free Energy of Ligand Removal in the Metal–Organic Framework UiO-66 , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[128]  A. Bell,et al.  The Influence of Functionals on Density Functional Theory Calculations of the Properties of Reducible Transition Metal Oxide Catalysts , 2013 .

[129]  C. Copéret,et al.  Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. , 2003, Angewandte Chemie.

[130]  J. Hupp,et al.  Regioselective Atomic Layer Deposition in Metal-Organic Frameworks Directed by Dispersion Interactions. , 2016, Journal of the American Chemical Society.

[131]  Donald G Truhlar,et al.  Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries. , 2010, Journal of chemical theory and computation.

[132]  C. Besnard,et al.  Scope and mechanism of asymmetric C(sp3)–H/C(Ar)–X coupling reactions: computational and experimental study , 2013 .

[133]  J. Hupp,et al.  Single-Site Organozirconium Catalyst Embedded in a Metal-Organic Framework. , 2015, Journal of the American Chemical Society.

[134]  R. Griffin,et al.  Dynamic DMF Binding in MOF-5 Enables the Formation of Metastable Cobalt-Substituted MOF-5 Analogues , 2015, ACS central science.

[135]  Peter Chen,et al.  Gas-phase thermochemistry of ruthenium carbene metathesis catalysts. , 2008, Journal of the American Chemical Society.

[136]  Avelino Corma,et al.  State of the art and future challenges of zeolites as catalysts , 2003 .

[137]  D. Truhlar,et al.  Validation of Density Functionals for Adsorption Energies on Transition Metal Surfaces. , 2017, Journal of chemical theory and computation.

[138]  A. B. Thompson,et al.  Assembly of dicobalt and cobalt-aluminum oxide clusters on metal-organic framework and nanocast silica supports. , 2017, Faraday discussions.

[139]  F. Kapteijn,et al.  Metal–organic and covalent organic frameworks as single-site catalysts , 2017, Chemical Society reviews.

[140]  D. Truhlar,et al.  Computational characterization and modeling of buckyball tweezers: density functional study of concave-convex pi...pi interactions. , 2008, Physical chemistry chemical physics : PCCP.

[141]  D. Truhlar,et al.  Carbene Rotamer Switching Explains the Reverse Trans Effect in Forming the Grubbs Second-Generation Olefin Metathesis Catalyst , 2011 .

[142]  Yuriy Román‐Leshkov,et al.  Heterogeneous Epoxide Carbonylation by Cooperative Ion-Pair Catalysis in Co(CO)4–-Incorporated Cr-MIL-101 , 2017, ACS central science.

[143]  D. Sholl,et al.  Benchmarking density functional theory predictions of framework structures and properties in a chemically diverse test set of metal–organic frameworks , 2015 .

[144]  Emily A. Carter,et al.  Challenges in Modeling Materials Properties Without Experimental Input , 2008, Science.

[145]  G. Kresse,et al.  Application of Hybrid Functionals to the Modeling of NO Adsorption on Cu−SAPO-34 and Co−SAPO-34: A Periodic DFT Study , 2009 .

[146]  Sebastian Matera,et al.  Transport limitations and bistability for in situ CO oxidation at RuO2(110): First-principles based multiscale modeling , 2010 .

[147]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[148]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[149]  M. Kärkäs,et al.  A Dinuclear Ruthenium-Based Water Oxidation Catalyst: Use of Non-Innocent Ligand Frameworks for Promoting Multi-Electron Reactions , 2015, Chemistry.

[150]  L. Broadbelt,et al.  Hybrid Quantum Mechanics/Molecular Mechanics Investigation of (salen)Mn for use in Metal−Organic Frameworks , 2010 .

[151]  Walter Thiel,et al.  Computational Catalysis — Past, Present, and Future , 2014 .

[152]  Craig M. Brown,et al.  Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. , 2014, Nature chemistry.

[153]  Paul Ha-Yeon Cheong,et al.  Computational prediction of small-molecule catalysts , 2008, Nature.

[154]  Qiang Zhang,et al.  Tuning the structure and function of metal-organic frameworks via linker design. , 2014, Chemical Society reviews.

[155]  Philippe Sautet,et al.  Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. , 2015, Nature chemistry.

[156]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[157]  W. Leitner,et al.  Can Contemporary Density Functional Theory Predict Energy Spans in Molecular Catalysis Accurately Enough To Be Applicable for in Silico Catalyst Design? A Computational/Experimental Case Study for the Ruthenium-Catalyzed Hydrogenation of Olefins. , 2016, Journal of the American Chemical Society.

[158]  J. Hupp,et al.  Tuning the properties of metal-organic framework nodes as supports of single-site iridium catalysts: node modification by atomic layer deposition of aluminium. , 2017, Faraday discussions.

[159]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[160]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[161]  Nicolaas A. Vermeulen,et al.  A Hafnium-Based Metal-Organic Framework as a Nature-Inspired Tandem Reaction Catalyst. , 2015, Journal of the American Chemical Society.

[162]  Krista S. Walton,et al.  Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74. , 2012, Journal of the American Chemical Society.

[163]  D. Truhlar,et al.  Free energy of reaction by density functional theory: oxidative addition of ammonia by an iridium complex with PCP pincer ligands , 2011 .

[164]  G. Marin,et al.  Mechanistic insights into the formation of butene isomers from 1-butanol in H-ZSM-5: DFT based microkinetic modelling , 2017 .

[165]  Rocco Moretti,et al.  Computational enzyme design. , 2013, Angewandte Chemie.

[166]  Zhipan Liu,et al.  Energy Landscape of Zirconia Phase Transitions. , 2015, Journal of the American Chemical Society.

[167]  A. Voter,et al.  Chapter 4 Accelerated Molecular Dynamics Methods: Introduction and Recent Developments , 2009 .

[168]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[169]  Yong Ding,et al.  Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity , 2011 .

[170]  M. Dincǎ,et al.  Selective Dimerization of Ethylene to 1-Butene with a Porous Catalyst , 2016, ACS Central Science.

[171]  K. Lillerud,et al.  H2 storage in isostructural UiO-67 and UiO-66 MOFs. , 2012, Physical chemistry chemical physics : PCCP.

[172]  T. Heine,et al.  Extension of the Universal Force Field to Metal-Organic Frameworks. , 2014, Journal of chemical theory and computation.

[173]  Hussein A. Younus,et al.  Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. , 2015, Chemical Society reviews.

[174]  D. Dixon,et al.  Zeolite-supported organorhodium fragments: essentially molecular surface chemistry elucidated with spectroscopy and theory. , 2009, Journal of the American Chemical Society.

[175]  M. Probst,et al.  Methane Activation in Gold Cation-Exchanged Zeolites: A DFT Study , 2012 .

[176]  Yuguang Ma,et al.  CO2 Capture and Separations Using MOFs: Computational and Experimental Studies. , 2017, Chemical reviews.

[177]  B. Lundqvist,et al.  NO oxidation properties of Pt(111) revealed by ab initio kinetic simulations , 2005 .

[178]  V. Pande,et al.  Chemical kinetics and mechanisms of complex systems: a perspective on recent theoretical advances. , 2014, Journal of the American Chemical Society.

[179]  Yibo Dou,et al.  Zr‐Based Metal—Organic Frameworks: Design, Synthesis, Structure, and Applications , 2016 .

[180]  Yao Fu,et al.  Mechanism of Vanadium-Catalyzed Deoxydehydration of Vicinal Diols: Spin-Crossover-Involved Processes , 2016 .

[181]  Michel Waroquier,et al.  Normal Mode Analysis in Zeolites: Toward an Efficient Calculation of Adsorption Entropies. , 2011, Journal of chemical theory and computation.

[182]  Alex B. F. Martinson,et al.  Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition , 2015 .

[183]  J. Hupp,et al.  Structural Transitions of the Metal-Oxide Nodes within Metal-Organic Frameworks: On the Local Structures of NU-1000 and UiO-66. , 2016, Journal of the American Chemical Society.

[184]  Jing Li,et al.  Luminescent metal-organic frameworks for chemical sensing and explosive detection. , 2014, Chemical Society reviews.

[185]  D. Vlachos,et al.  Mechanism of Brønsted acid-catalyzed glucose dehydration. , 2015, ChemSusChem.

[186]  R. Forgan,et al.  Postsynthetic Modification of Zirconium Metal‐Organic Frameworks , 2016 .

[187]  Christopher H. Hendon,et al.  Grand Challenges and Future Opportunities for Metal–Organic Frameworks , 2017, ACS central science.

[188]  A. Cooper Porous Molecular Solids and Liquids , 2017, ACS central science.

[189]  A. Comas‐Vives,et al.  Surface Organometallic and Coordination Chemistry Toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities , 2016 .

[190]  J. Hupp,et al.  Metal-organic framework nodes as nearly ideal supports for molecular catalysts: NU-1000- and UiO-66-supported iridium complexes. , 2015, Journal of the American Chemical Society.

[191]  P. Sautet,et al.  Fast prediction of selectivity in heterogeneous catalysis from extended Brønsted-Evans-Polanyi relations: a theoretical insight. , 2009, Angewandte Chemie.

[192]  Raul Arenal,et al.  Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. , 2017, Nature materials.

[193]  Jiali Gao,et al.  Combined Quantum Mechanical and Molecular Mechanical Methods , 1999 .

[194]  C. Cramer,et al.  Quantum-Chemical Characterization of the Properties and Reactivities of Metal-Organic Frameworks. , 2015, Chemical reviews.

[195]  R. Schmid,et al.  Dioxygen binding to Fe-MOF-74: microscopic insights from periodic QM/MM calculations , 2016 .

[196]  J. Hupp,et al.  Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration , 2016 .

[197]  K. Vogiatzis,et al.  Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities , 2018, Chemical reviews.

[198]  J. Hupp,et al.  Chemical, thermal and mechanical stabilities of metal–organic frameworks , 2016 .

[199]  M. Stamatakis,et al.  A review of multiscale modeling of metal-catalyzed reactions: Mechanism development for complexity and emergent behavior , 2011 .

[200]  Konstantin M. Neyman,et al.  Approaching Nanoscale Oxides: Models and Theoretical Methods , 2009 .

[201]  J. Hupp,et al.  Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000. , 2017, Faraday discussions.

[202]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[203]  P. Serna,et al.  Zeolite-supported rhodium complexes and clusters: switching catalytic selectivity by controlling structures of essentially molecular species. , 2011, Journal of the American Chemical Society.

[204]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[205]  Berend Smit,et al.  Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. , 2008, Chemical reviews.

[206]  C. Cramer,et al.  Single Ni atoms and Ni4 clusters have similar catalytic activity for ethylene dimerization , 2017 .

[207]  Manoj Kumar,et al.  Ligand Effects on the Regioselectivity of Rhodium-Catalyzed Hydroformylation: Density Functional Calculations Illuminate the Role of Long-Range Noncovalent Interactions , 2014 .

[208]  Francis X. Greene,et al.  Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes , 2016, Nature Communications.

[209]  Nicolaas A. Vermeulen,et al.  An Exceptionally Stable Metal-Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation. , 2016, Journal of the American Chemical Society.

[210]  Sanliang Ling,et al.  Dynamic acidity in defective UiO-66 , 2015, Chemical science.

[211]  P. Hu,et al.  Possibility of designing catalysts beyond the traditional volcano curve: a theoretical framework for multi-phase surfaces† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc01732g , 2015, Chemical science.

[212]  A. B. Thompson,et al.  Installing Heterobimetallic Cobalt–Aluminum Single Sites on a Metal Organic Framework Support , 2016 .

[213]  Thomas Bligaard,et al.  A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals , 2015 .

[214]  Yılmaz Özkılıç,et al.  A DFT Study on the Binuclear CuAAC Reaction: Mechanism in Light of New Experiments , 2016 .

[215]  Manoj Kumar,et al.  Importance of Long-Range Noncovalent Interactions in the Regioselectivity of Rhodium-Xantphos-Catalyzed Hydroformylation , 2015 .

[216]  Elsje Alessandra Quadrelli,et al.  Titration of Zr3(μ-OH) Hydroxy Groups at the Cornerstones of Bulk MOF UiO-67, [Zr6O4(OH)4(biphenyldicarboxylate)6], and Their Reaction with [AuMe(PMe3)] , 2012 .

[217]  M. Probst,et al.  Structures and Mechanisms of the Carbonyl-ene Reaction between MOF-11 Encapsulated Formaldehyde and Propylene: An ONIOM Study , 2008 .

[218]  Xiao He,et al.  Correction: MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions , 2016, Chemical science.

[219]  Michel Waroquier,et al.  Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). , 2013, Journal of the American Chemical Society.

[220]  Thomas Bligaard,et al.  Density functional theory in surface chemistry and catalysis , 2011, Proceedings of the National Academy of Sciences.

[221]  D. Sholl,et al.  Recent developments in first-principles force fields for molecules in nanoporous materials , 2014 .

[222]  Jean-Sabin McEwen,et al.  How low can you go? Minimum energy pathways for O2 dissociation on Pt(111). , 2012, Physical chemistry chemical physics : PCCP.