Plasmonic Response of Metallic Nanojunctions Driven by Single Atom Motion: Quantum Transport Revealed in Optics

The correlation between transport properties across subnanometric metallic gaps and the optical response of the system is a complex effect that is determined by the fine atomic-scale details of the junction structure. As experimental advances are progressively accessing transport and optical characterization of smaller nanojunctions, a clear connection between the structural, electronic, and optical properties in these nanocavities is needed. Using ab initio calculations, we present here a study of the simultaneous evolution of the structure and the optical response of a plasmonic junction as the particles forming the cavity, two Na380 clusters, approach and retract. Atomic reorganizations are responsible for a large hysteresis of the plasmonic response of the system, which shows a jump-to-contact instability during the approach process and the formation of an atom-sized neck across the junction during retraction. Our calculations demonstrate that, due to the quantization of the conductance in metal nanoc...

[1]  Angel Rubio,et al.  Ab initio nanoplasmonics: The impact of atomic structure , 2014 .

[2]  Tokushi Kizuka,et al.  Atomic configuration and mechanical and electrical properties of stable gold wires of single-atom width , 2008 .

[3]  Garnett W. Bryant,et al.  Metal‐nanoparticle plasmonics , 2008 .

[4]  K. Jacobsen,et al.  Density Functional Simulation of a Breaking Nanowire , 1999 .

[5]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[6]  D. Bonnell,et al.  Plasmon-induced electrical conduction in molecular devices. , 2010, ACS nano.

[7]  Angel Rubio,et al.  Performance of nonlocal optics when applied to plasmonic nanostructures , 2013 .

[8]  Richard M. Martin,et al.  Calculation of the optical response of atomic clusters using time-dependent density functional theory and local orbitals , 2002 .

[9]  Nianqiang Wu,et al.  Plasmon-enhanced optical sensors: a review. , 2015, The Analyst.

[10]  Uzi Landman,et al.  Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture , 1990, Science.

[11]  P. Nordlander,et al.  Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. , 2011, The Journal of chemical physics.

[12]  Yukihito Kondo,et al.  Quantized conductance through individual rows of suspended gold atoms , 1998, Nature.

[13]  P. Nordlander,et al.  Quantum plasmonics: Symmetry-dependent plasmon-molecule coupling and quantized photoconductances , 2012 .

[14]  R. Nieminen,et al.  Quantized Evolution of the Plasmonic Response in a Stretched Nanorod. , 2015, Physical review letters.

[15]  Jean-Jacques Greffet,et al.  Resonant optical antennas , 2013, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[16]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[17]  George C Schatz,et al.  Electronic structure methods for studying surface-enhanced Raman scattering. , 2008, Chemical Society reviews.

[18]  A. Borisov,et al.  A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. , 2015, Faraday discussions.

[19]  P. Nordlander,et al.  Tunable molecular plasmons in polycyclic aromatic hydrocarbons. , 2013, ACS nano.

[20]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[21]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[22]  Javier Aizpurua,et al.  Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.

[23]  V. A. Apkarian,et al.  Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse. , 2012, ACS nano.

[24]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[25]  Alejandro Manjavacas,et al.  Quantum Effects in Charge Transfer Plasmons , 2015 .

[26]  Karsten Wedel Jacobsen,et al.  Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms , 1998 .

[27]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[28]  Jan M. van Ruitenbeek,et al.  Quantum properties of atomic-sized conductors , 2002, cond-mat/0208239.

[29]  Emilio Artacho,et al.  LINEAR-SCALING AB-INITIO CALCULATIONS FOR LARGE AND COMPLEX SYSTEMS , 1999 .

[30]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[31]  Adrian P. Sutton,et al.  On the stability of a tip and flat at very small separations , 1988 .

[32]  Andreas B. Dahlin,et al.  A thermal plasmonic sensor platform: resistive heating of nanohole arrays. , 2014, Nano letters.

[33]  Olivier Coulaud,et al.  A Parallel Iterative Method for Computing Molecular Absorption Spectra. , 2010, Journal of chemical theory and computation.

[34]  Á. Rubio,et al.  Anisotropy Effects on the Plasmonic Response of Nanoparticle Dimers. , 2015, The journal of physical chemistry letters.

[35]  R. Aroca,et al.  Plasmon enhanced spectroscopy. , 2013, Physical chemistry chemical physics : PCCP.

[36]  L. Liz‐Marzán,et al.  Modern Applications of Plasmonic Nanoparticles: From Energy to Health , 2015 .

[37]  J. Murrell,et al.  Potential energy functions for atomic solids , 1990 .

[38]  L. Venkataraman,et al.  Correlating structure, conductance, and mechanics of silver atomic-scale contacts. , 2013, ACS nano.

[39]  J. M. van Ruitenbeek,et al.  Formation and manipulation of a metallic wire of single gold atoms , 1998, Nature.

[40]  Luis M Liz-Marzán,et al.  Towards low-cost flexible substrates for nanoplasmonic sensing. , 2013, Physical chemistry chemical physics : PCCP.

[41]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[42]  N J Halas,et al.  Optical spectroscopy of conductive junctions in plasmonic cavities. , 2010, Nano letters.

[43]  Annemarie Pucci,et al.  Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. , 2008, Physical review letters.

[44]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[45]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[46]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  Vieira,et al.  Atomic-sized metallic contacts: Mechanical properties and electronic transport. , 1996, Physical review letters.

[48]  Lasse Jensen,et al.  Theoretical studies of plasmonics using electronic structure methods. , 2011, Chemical reviews.

[49]  Peter Nordlander,et al.  Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. , 2007, Nano letters.

[50]  Dietrich Foerster,et al.  On the Kohn-Sham density response in a localized basis set. , 2009, The Journal of chemical physics.

[51]  H. Haberland,et al.  Optical spectra and their moments for sodium clusters, , with 3 n 64 , 1999 .

[52]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[53]  Aeneas Wiener,et al.  Surface plasmons and nonlocality: a simple model. , 2013, Physical review letters.

[54]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[55]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[56]  Lin Wu,et al.  Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions , 2014, Science.

[57]  Sutton,et al.  Jumps in electronic conductance due to mechanical instabilities. , 1993, Physical review letters.

[58]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[59]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[60]  Emil Prodan,et al.  Quantum plasmonics: optical properties and tunability of metallic nanorods. , 2010, ACS nano.

[61]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[62]  A. Borisov,et al.  Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. , 2015, Nano letters.

[63]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[64]  P. Nordlander,et al.  Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances. , 2015, ACS nano.

[65]  Serdar Ogut,et al.  Ab Initio Excitation Spectra and Collective Electronic Response in Atoms and Clusters , 1999 .

[66]  U. Landman,et al.  Nanotribology: friction, wear and lubrication at the atomic scale , 1995, Nature.

[67]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[68]  Olivier Coulaud,et al.  Fast construction of the Kohn–Sham response function for molecules , 2009, 0910.3796.

[69]  Juerg Leuthold,et al.  Atomic Scale Plasmonic Switch. , 2016, Nano letters.

[70]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[71]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[72]  Naomi J Halas,et al.  Nanoshell-enabled photothermal cancer therapy: impending clinical impact. , 2008, Accounts of chemical research.

[73]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[74]  Sáenz,et al.  Conductance and Mechanical Properties of Atomic-Size Metallic Contacts: A Simple Model. , 1996, Physical review letters.

[75]  Serdar Ogut,et al.  First-principles density-functional calculations for optical spectra of clusters and nanocrystals , 2002 .

[76]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .

[77]  Olivier J. F. Martin,et al.  Controlling and tuning strong optical field gradients at a local probe microscope tip apex , 1997 .

[78]  First-principles simulations of the stretching and final breaking of Al nanowires: Mechanical properties and electrical conductance , 2002, cond-mat/0211488.

[79]  Cohen,et al.  First-principles study of the structural properties of alkali metals. , 1986, Physical review. B, Condensed matter.

[80]  Diana Adler,et al.  Electronic Transport In Mesoscopic Systems , 2016 .

[81]  Fengxian Xie,et al.  Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells , 2012, Advanced materials.

[82]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[83]  Alonso,et al.  Ab Initio Photoabsorption Spectra and Structures of Small Semiconductor and Metal Clusters. , 1996, Physical review letters.

[84]  Vieira,et al.  Conductance steps and quantization in atomic-size contacts. , 1993, Physical review. B, Condensed matter.