Subband IPNLMS Adaptive Filter for Sparse Impulse Response Systems

In adaptive filtering, the sparseness of impulse response and input signal characteristics are very important factors of it`s performance. This paper presents a subband improved proportionate normalized least square (SIPNLMS) algorithm which combines IPNLMS for impulse response sparseness and subband filtering for prewhitening the input signal. As drawing and combining the advantage of conventional approaches, the proposed algorithm, for impulse responses exhibiting high sparseness, achieve improved convergence speed and tracking ability. Simulation results, using colored signal(AR(4)) and speech input signals, show improved performance compared to fullband structure of existing methods.