Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber.

We present two experiments confirming that hypocycloid Kagome-type hollow-core photonic crystal fibers (HC-PCFs) are excellent candidates for beam delivery of MW peak powers and pulse compression down to the sub-50 fs regime. We demonstrate temporal pulse compression of a 1030-nm Yb:YAG thin disk laser providing 860 fs, 1.9 µJ pulses at 3.9 MHz. Using a single-pass grating pulse compressor, we obtained a pulse duration of 48 fs (FWHM), a spectral bandwidth of 58 nm, and an average output power of 4.2 W with an overall power efficiency into the final polarized compressed pulse of 56%. The pulse energy was 1.1 µJ. This corresponds to a peak power of more than 10 MW and a compression factor of 18 taking into account the exact temporal pulse profile measured with a SHG FROG. The compressed pulses were close to the transform limit of 44 fs. Moreover, we present transmission of up to 97 µJ pulses at 10.5 ps through 10-cm long fiber, corresponding to more than twice the critical peak power for self-focusing in silica.

[1]  E. Treacy Optical pulse compression with diffraction gratings , 1969 .

[2]  Daniel R. Grischkowsky,et al.  Optical pulse compression based on enhanced frequency chirping , 1982 .

[3]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[4]  Bernard Prade,et al.  Determination of the inertial contribution to the nonlinear refractive index of air, N 2 , and O 2 by use of unfocused high-intensity femtosecond laser pulses , 1997 .

[5]  T. Brabec,et al.  Theory of self-focusing in a hollow waveguide. , 1998, Optics letters.

[6]  N. Matuschek,et al.  Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics. , 1999, Science.

[7]  Günter Steinmeyer,et al.  Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation , 1999 .

[8]  T. Brabec,et al.  Optical pulse compression: bulk media versus hollow waveguides. , 2000, Optics letters.

[9]  D J Richardson,et al.  Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber. , 2003, Optics letters.

[10]  Mohammd Mohebbi,et al.  Compression of Femtosecond Optical Pulses Using Hollow-Core Fibers , 2004 .

[11]  U. Kleineberg,et al.  Atomic transient recorder , 2004, Nature.

[12]  D. Allan,et al.  Surface modes in air-core photonic band-gap fibers. , 2004, Optics express.

[13]  Dimitre Ouzounov,et al.  Soliton pulse compression in photonic band-gap fibers. , 2005, Optics express.

[14]  Katsumi Midorikawa,et al.  Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient , 2005 .

[15]  M. T. Burnett,et al.  Identification of Bloch-modes in hollow-core photonic crystal fiber cladding. , 2007, Optics express.

[16]  F Benabid,et al.  Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs , 2007, Science.

[17]  M Hanna,et al.  Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers. , 2008, Optics letters.

[18]  Jan Hald,et al.  Dynamics of gas flow in hollow core photonic bandgap fibers. , 2008, Applied optics.

[19]  B. Do,et al.  Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm. , 2008, Applied optics.

[20]  Fetah Benabid,et al.  Double photonic bandgap hollow-core photonic crystal fiber. , 2009, Optics express.

[21]  F. Benabid,et al.  High harmonic generation in a gas-filled hollow-core photonic crystal fiber , 2009 .

[22]  Amiel A Ishaaya,et al.  Highly-efficient coupling of linearly- and radially-polarized femtosecond pulses in hollow-core photonic band-gap fibers. , 2009, Optics express.

[23]  Scott A. Diddams,et al.  The evolving optical frequency comb [Invited] , 2010 .

[24]  Tino Eidam,et al.  Femtosecond fiber CPA system emitting 830 W average output power. , 2010, Optics letters.

[25]  H. Hoffmann,et al.  Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. , 2010, Optics letters.

[26]  Scott A. Diddams,et al.  The evolving optical frequency comb , 2010 .

[27]  Jens Limpert,et al.  High-repetition-rate sub-5-fs pulses with 12 GW peak power from fiber-amplifier-pumped optical parametric chirped-pulse amplification. , 2011, Optics letters.

[28]  F. Benabid,et al.  Temporal pulse compression in a Xe-filled Kagome-type hollow-core photonic crystal fiber at high average power , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[29]  M F Saleh,et al.  Femtosecond nonlinear fiber optics in the ionization regime. , 2011, Physical review letters.

[30]  A. Mussot,et al.  High gain fiber optical parametric chirped pulse amplification of femtosecond pulses at 1 μm , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[31]  A. Mussot,et al.  High gain fiber optical parametric chirped pulse amplification of femtosecond pulses at 1 µm , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[32]  U. Kleineberg,et al.  A flexible apparatus for attosecond photoelectron spectroscopy of solids and surfaces. , 2011, The Review of scientific instruments.

[33]  Fetah Benabid,et al.  Temporal pulse compression in a Xe-filled Kagome-type hollow-core photonic crystal fiber at high average power , 2011, CLEO 2011.

[34]  P. Roberts,et al.  Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. , 2011, Optics letters.

[35]  P. Roberts,et al.  Linear and nonlinear optical properties of hollow core photonic crystal fiber , 2011 .

[36]  P. Russell,et al.  Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited] , 2011 .

[37]  C. Saraceno,et al.  Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers. , 2011, Optics express.

[38]  Tino Eidam,et al.  Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power. , 2012, Optics letters.

[39]  F Benabid,et al.  Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber. , 2012, Optics letters.

[40]  C. Saraceno,et al.  Self-referenceable frequency comb from an ultrafast thin disk laser. , 2012, Optics express.

[41]  Ivo Zawischa,et al.  Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion. , 2012, Optics express.

[42]  Xiang Peng,et al.  Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression. , 2012, Optics letters.

[43]  Matthias Golling,et al.  275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. , 2012, Optics express.

[44]  M. Golling,et al.  SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds , 2012, IEEE Journal of Selected Topics in Quantum Electronics.