Higher order fractional variational optimal control problems with delayed arguments

Abstract This article deals with higher order Caputo fractional variational problems in the presence of delay in the state variables and their integer higher order derivatives.

[1]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[2]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[3]  D.Baleanu,et al.  Lagrangians with linear velocities within Riemann-Liouville fractional derivatives , 2004 .

[4]  I. Podlubny,et al.  Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives , 2005, math-ph/0512028.

[5]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[6]  Y. Chen,et al.  Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—an Expository Review , 2004 .

[7]  O. Agrawal,et al.  Fractional hamilton formalism within caputo’s derivative , 2006, math-ph/0612025.

[8]  Dumitru Baleanu,et al.  Fractional variational principles with delay within caputo derivatives , 2010 .

[9]  Dumitru Baleanu,et al.  The Hamilton formalism with fractional derivatives , 2007 .

[10]  I. Podlubny Fractional differential equations , 1998 .

[11]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Malgorzata Klimek,et al.  Fractional sequential mechanics — models with symmetric fractional derivative , 2001 .

[14]  Changpin Li,et al.  Introduction to fractional integrability and differentiability , 2011 .

[15]  Dumitru Baleanu,et al.  Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives , 2005 .

[16]  Malgorzata Klimek,et al.  Lagrangean and Hamiltonian fractional sequential mechanics , 2002 .

[17]  Enrico Scalas,et al.  Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  G. Zaslavsky,et al.  Nonholonomic constraints with fractional derivatives , 2006, math-ph/0603067.

[19]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[20]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[21]  Om P. Agrawal,et al.  Generalized Euler—Lagrange Equations and Transversality Conditions for FVPs in terms of the Caputo Derivative , 2007 .

[22]  O. Agrawal,et al.  A Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems , 2007 .

[23]  Om P. Agrawal,et al.  Fractional variational calculus and the transversality conditions , 2006 .

[24]  R. D. Driver,et al.  Ordinary and Delay Differential Equations , 1977 .

[25]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[26]  Shaher Momani,et al.  A numerical scheme for the solution of multi-order fractional differential equations , 2006, Appl. Math. Comput..

[27]  G. H. Hardy,et al.  Some properties of fractional integrals. I. , 1928 .

[28]  D.Baleanu,et al.  Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives , 2005, hep-th/0510071.

[29]  Dumitru Baleanu,et al.  Fractional variational principles with delay , 2008 .

[30]  J. Gregory,et al.  Constrained optimization in the calculus of variations and optimal control theory , 1992 .

[31]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[32]  Isabel S. Jesus,et al.  Fractional control of heat diffusion systems , 2008 .

[33]  Javier F. Rosenblueth Systems with Time Delay in the Calculus of Variations: A Variational Approach , 1988 .