Multigrid method for symmetric Toeplitz tridiagonal matrix: Convergence analysis and application to fractional Feynman-Kac equation

The V-cycle multigrid method can significantly lower the computational cost, yet their uniform convergence properties have not been systematically examined, even for the classical parabolic partial differential equations. The main contribution of this paper is that by improving the framework of convergence estimates for multigrid method [Math. Comp., 49 (1987), pp. 311--329], we derive the uniform convergence estimates of the V-cycle multigrid method for symmetric positive definite Toeplitz tridiagonal matrix. Then it is used to the algebraic equation generated by the compact difference scheme of the fractional Feynman-Kac equation, which describes the joint probability density function of non-Brownian motion. In particular, for the multigrid method, there exists two coarsening strategies, i.e., doubling the mesh size and Galerkin approach, which lead to the different coarsening stiffness matrices in the general case, but the numerical experiments show that they have almost the same error results.

[1]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[2]  Weihua Deng,et al.  Discretized fractional substantial calculus , 2013, 1310.3086.

[3]  Graham Horton,et al.  A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[4]  Minghua Chen,et al.  Numerical Algorithms for the Forward and Backward Fractional Feynman–Kac Equations , 2014, J. Sci. Comput..

[5]  Eli Barkai,et al.  Fractional Feynman-Kac equation for weak ergodicity breaking. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[7]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[8]  Weihua Deng,et al.  Second-order LOD multigrid method for multidimensional Riesz fractional diffusion equation , 2013, BIT Numerical Mathematics.

[9]  Gérard Meurant,et al.  A Review on the Inverse of Symmetric Tridiagonal and Block Tridiagonal Matrices , 1992, SIAM J. Matrix Anal. Appl..

[10]  Minghua Chen,et al.  High Order Algorithms for the Fractional Substantial Diffusion Equation with Truncated Lévy Flights , 2014, SIAM J. Sci. Comput..

[11]  R. Bank,et al.  Sharp Estimates for Multigrid Rates of Convergence with General Smoothing and Acceleration , 1985 .

[12]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[13]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[14]  Raymond H. Chan,et al.  Multigrid Method for Ill-Conditioned Symmetric Toeplitz Systems , 1998, SIAM J. Sci. Comput..

[15]  Marco Donatelli,et al.  Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices , 2015 .

[16]  Stefano Serra Capizzano,et al.  Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..

[17]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[18]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[19]  Hai-Wei Sun,et al.  Multigrid method for fractional diffusion equations , 2012, J. Comput. Phys..

[20]  Marco Donatelli,et al.  An algebraic generalization of local Fourier analysis for grid transfer operators in multigrid based on Toeplitz matrices , 2010, Numer. Linear Algebra Appl..

[21]  Eli Barkai,et al.  Fractional Feynman-Kac equation for non-brownian functionals. , 2009, Physical review letters.

[22]  J. Pasciak,et al.  New convergence estimates for multigrid algorithms , 1987 .

[23]  Alan J. Laub,et al.  Matrix analysis - for scientists and engineers , 2004 .

[24]  Yingjun Jiang,et al.  Multigrid methods for space fractional partial differential equations , 2015, J. Comput. Phys..

[25]  Jinchao Xu,et al.  The method of alternating projections and the method of subspace corrections in Hilbert space , 2002 .

[26]  Marco Donatelli,et al.  A V-cycle Multigrid for multilevel matrix algebras: proof of optimality , 2007, Numerische Mathematik.

[27]  Stefano Serra Capizzano,et al.  Numerische Mathematik Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002 .

[28]  Weihua Deng,et al.  Convergence proof for the multigrid method of the nonlocal model , 2016 .

[29]  Barkai,et al.  From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[31]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[32]  R. Chan,et al.  An Introduction to Iterative Toeplitz Solvers , 2007 .

[33]  Weihua Deng,et al.  Fourth Order Difference Approximations for Space Riemann-Liouville Derivatives Based on Weighted and Shifted Lubich Difference Operators , 2014 .

[34]  Minghua Chen,et al.  Fourth Order Accurate Scheme for the Space Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..

[35]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .