Detecting hierarchical modularity in biological networks.

Spatially or chemically isolated modules that carry out discrete functions are considered fundamental building blocks of cellular organization. However, detecting them in highly integrated biological networks requires a thorough understanding of the organization of these networks. In this chapter I argue that many biological networks are organized into many small, highly connected topologic modules that combine in a hierarchical manner into larger, less cohesive units. On top of a scale-free degree distribution, these networks show a power law scaling of the clustering coefficient with the node degree, a property that can be used as a signature of hierarchical organization. As a case study, I identify the hierarchical modules within the Escherichia coli metabolic network, and show that the uncovered hierarchical modularity closely overlaps with known metabolic functions.

[1]  Araceli M. Huerta,et al.  From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[2]  M. Vidal,et al.  Protein interaction mapping in C. elegans using proteins involved in vulval development. , 2000, Science.

[3]  B. Palsson,et al.  Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. , 2000, Journal of theoretical biology.

[4]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Lauffenburger Cell signaling pathways as control modules: complexity for simplicity? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[7]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[8]  Peter D. Karp,et al.  The EcoCyc and MetaCyc databases , 2000, Nucleic Acids Res..

[9]  Martin Schoen,et al.  Phase behavior of confined symmetric binary mixtures. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[11]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[12]  Mark Newman,et al.  Models of the Small World , 2000 .

[13]  C. Rao,et al.  Control motifs for intracellular regulatory networks. , 2001, Annual review of biomedical engineering.

[14]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[15]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[16]  D. Fell,et al.  The small world inside large metabolic networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[18]  E. Koonin,et al.  Scale-free networks in biology: new insights into the fundamentals of evolution? , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[19]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Albert-Laszlo Barabasi,et al.  Deterministic scale-free networks , 2001 .

[23]  V. Eguíluz,et al.  Growing scale-free networks with small-world behavior. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[25]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[27]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[28]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[29]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[30]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[31]  D. Fell,et al.  The small world of metabolism , 2000, Nature Biotechnology.

[32]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[33]  Neal S. Holter,et al.  Dynamic modeling of gene expression data. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Alessandro Vespignani,et al.  Topology and correlations in structured scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[36]  Albert-László Barabási,et al.  Linked: The New Science of Networks , 2002 .

[37]  T. Ito,et al.  Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[39]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. N. Dorogovtsev,et al.  Pseudofractal scale-free web. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[42]  Farren J. Isaacs,et al.  Computational studies of gene regulatory networks: in numero molecular biology , 2001, Nature Reviews Genetics.

[43]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[44]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[45]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[46]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[47]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[48]  Julio Collado-Vides,et al.  RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12 , 2001, Nucleic Acids Res..

[49]  S. Fields,et al.  Genome-wide analysis of vaccinia virus protein-protein interactions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[51]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[52]  Petter Holme,et al.  Subnetwork hierarchies of biochemical pathways , 2002, Bioinform..

[53]  J. Wojcik,et al.  The protein–protein interaction map of Helicobacter pylori , 2001, Nature.

[54]  Marek S. Skrzypek,et al.  YPDTM, PombePDTM and WormPDTM: model organism volumes of the BioKnowledgeTM Library, an integrated resource for protein information , 2001, Nucleic Acids Res..

[55]  Natalia Maltsev,et al.  WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction , 2000, Nucleic Acids Res..

[56]  P. Legrain,et al.  A genomic approach of the hepatitis C virus generates a protein interaction map. , 2000, Gene.

[57]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[58]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[59]  Wm. Creighton Woodward The Common Sense of the Milk Question , 1908 .

[60]  A. Wagner The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. , 2001, Molecular biology and evolution.

[61]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[63]  Ioannis Xenarios,et al.  DIP: the Database of Interacting Proteins , 2000, Nucleic Acids Res..

[64]  Heinz Georg Schuster,et al.  Complex Adaptive Systems , 2005 .