Potential energy surfaces for the benzene-rare gas systems

Abstract A harmonic expansion representation of the intermolecular interaction has been exploited to obtain the potential energy surface (PES) for the C 6 H 6 –He, –Ne, –Ar, –Kr and –Xe systems in an analytical form. Basic data employed are binding energy, equilibrium distance and long-range attraction predicted by a semi-empirical method for selected configurations of the complexes. For those favorable cases where additional information are available the proposed PESs exhibit features in good agreement with those derived from spectroscopy and scattering experiments and/or ab initio calculations. The availability of realistic PESs expressed in an analytical form opens new perspectives of calculations in molecular dynamics and spectroscopic simulations where the benzene molecule and rare gas atoms are involved.

[1]  Pavel Hobza,et al.  Abinitio second‐ and fourth‐order Mo/ller–Plesset study on structure, stabilization energy, and stretching vibration of benzene⋅⋅⋅X (X=He,Ne,Ar,Kr,Xe) van der Waals molecules , 1992 .

[2]  Henrik Koch,et al.  Ground state benzene–argon intermolecular potential energy surface , 1999 .

[3]  Pavel Hobza,et al.  Structure and Properties of Benzene-Containing Molecular Clusters - Nonempirical Ab-Initio Calculations and Experiments , 1994 .

[4]  R. T. Pack First quantum corrections to second virial coefficients for anisotropic interactions: Simple, corrected formulaa) , 1983 .

[5]  Alfred Bauder,et al.  Intermolecular dynamics of benzene–rare gas complexes as derived from microwave spectra , 1994 .

[6]  D. L. Monts,et al.  Rotational analysis of the 1B2u(ππ) ←1A1g, (610) band of benzene and helium–benzene van der Waals complexes in a supersonic jet , 1979 .

[7]  Hans Peter Lüthi,et al.  Ab initio computations close to the one‐particle basis set limit on the weakly bound van der Waals complexes benzene–neon and benzene–argon , 1994 .

[8]  Klaus Luther,et al.  Intermolecular potential effects in trajectory calculations of collisions between large highly excited molecules and noble gases , 1996 .

[9]  I. Oref,et al.  Dynamics and energy release in benzene/Ar cluster dissociation , 2000 .

[10]  B. Burrows,et al.  Atom—atom potential parameters for van der Waals complexes of aromatics and rare-gas atoms , 1990 .

[11]  J. Dymond,et al.  The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation , 1979 .

[12]  R. Brandt,et al.  Anisotropic intermolecular potentials for HeC6H6 and HeC5H5N from total differential cross section measurements , 1991 .

[13]  Rob G. Satink,et al.  The infrared spectrum of the benzene-Ar cation , 1999 .

[14]  A. Avoird,et al.  Vibrational overtones in the electronic ground state of the benzene-Ar complex: A combined experimental and theoretical analysis , 1998 .

[15]  A. R. Edmonds Angular Momentum in Quantum Mechanics , 1957 .

[16]  J. Troe,et al.  Trajectory simulations of collisional energy transfer in highly excited benzene and hexafluorobenzene , 1995 .

[17]  H. Krause,et al.  Binding Energy and Structure of van der Waals Complexes of Benzene , 1994 .

[18]  H. Krause,et al.  Dissociation energy of neutral and ionic benzene‐noble gas dimers by pulsed field threshold ionization spectroscopy , 1993 .

[19]  Fernando Pirani,et al.  Range, strength and anisotropy of intermolecular forces in atom–molecule systems: an atom–bond pairwise additivity approach , 2001 .

[20]  Fernando Pirani,et al.  Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations , 1991 .