Modified log-Sobolev Inequalities for Strongly Log-Concave Distributions

We show that the modified log-Sobolev constant for a natural Markov chain which converges to an r-homogeneous strongly log-concave distribution is at least 1/r. Applications include an asymptotically optimal mixing time bound for the bases-exchange walk for matroids, and a concentration bound for Lipschitz functions over these distributions.

[1]  Tali Kaufman,et al.  High Order Random Walks: Beyond Spectral Gap , 2017, APPROX-RANDOM.

[2]  June Huh,et al.  Lorentzian polynomials , 2019, Annals of Mathematics.

[3]  Nima Anari,et al.  Log-concave polynomials II: high-dimensional walks and an FPRAS for counting bases of a matroid , 2018, STOC.

[4]  James G. Oxley,et al.  Matroid theory , 1992 .

[5]  S. Bobkov,et al.  Modified Logarithmic Sobolev Inequalities in Discrete Settings , 2006 .

[6]  Prasad Tetali,et al.  The subgaussian constant and concentration inequalities , 2006 .

[7]  Nima Anari,et al.  Log-Concave Polynomials, Entropy, and a Deterministic Approximation Algorithm for Counting Bases of Matroids , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[8]  Yuval Peres,et al.  Concentration of Lipschitz Functionals of Determinantal and Other Strong Rayleigh Measures , 2011, Combinatorics, Probability and Computing.

[9]  T. Liggett,et al.  Negative dependence and the geometry of polynomials , 2007, 0707.2340.

[10]  M. Sammer ASPECTS OF MASS TRANSPORTATION IN DISCRETE CONCENTRATION INEQUALITIES , 2005 .

[11]  Tali Kaufman,et al.  High Order Random Walks: Beyond Spectral Gap , 2020, Comb..

[12]  Sharad Goel,et al.  Modified logarithmic Sobolev inequalities for some models of random walk , 2004 .

[13]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[14]  Desh Ranjan,et al.  Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.

[15]  Eric Vigoda,et al.  Elementary bounds on Poincaré and log-Sobolev constants for decomposable Markov chains , 2004, math/0503537.

[16]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[17]  P. Brand'en Polynomials with the half-plane property and matroid theory , 2006, math/0605678.

[18]  Jan Vondrak,et al.  Concentration of Lipschitz Functions of Negatively Dependent Variables , 2018, 1804.10084.

[19]  V. Climenhaga Markov chains and mixing times , 2013 .

[20]  M. Jerrum Counting, Sampling and Integrating: Algorithms and Complexity , 2003 .

[21]  Leonid Gurvits A Polynomial-Time Algorithm to Approximate the Mixed Volume within a Simply Exponential Factor , 2009, Discret. Comput. Geom..

[22]  Nima Anari,et al.  Monte Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh Distributions and Determinantal Point Processes , 2016, COLT.

[23]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[24]  Tzong-Yow Lee,et al.  Logarithmic Sobolev inequality for some models of random walks , 1998 .

[25]  Leonid Gurvits,et al.  On multivariate Newton-like inequalities , 2008, 0812.3687.

[26]  Ben Morris Improved Mixing Time Bounds for the Thorp Shuffle , 2013, Comb. Probab. Comput..

[27]  Botong Wang,et al.  Correlation bounds for fields and matroids , 2018, Journal of the European Mathematical Society.

[28]  Karl-Joachim Wirths,et al.  On Elementary Bounds for , 2015 .

[29]  Tomás Feder,et al.  Balanced matroids , 1992, STOC '92.

[30]  Justin Salez,et al.  Modified log-Sobolev inequalities for strong-Rayleigh measures , 2019, The Annals of Applied Probability.

[31]  Lap Chi Lau,et al.  Improved analysis of higher order random walks and applications , 2020, STOC.

[32]  Gábor Lugosi,et al.  Concentration Inequalities , 2008, COLT.

[33]  Bimal Kumar Roy,et al.  Counting, sampling and integrating: Algorithms and complexity , 2013 .