Reflectance and absorbance of all-dielectric metamaterial composites with fractal boundaries : A numerical investigation

Two-dimensional two-phase heterostructures have been the subject of many investigations including computer simulations. An outstanding issue is the shape analysis of the reflectance for dielectric inclusions of arbitrarily complex geometry. We report on finite element numerical calculations to investigate the effects a fractal-shaped object having an intrinsic complex permittivity with a negative real part embedded in a host matrix with real and positive permittivity can have on reflectance and absorbance of a uniform plane wave impinging on it. The simulations were performed at a wavelength much larger than the length scales of the inhomogeneities. The reflectance and absorbance of the structures are shown to be highly sensitive to the details of the fractalmetamaterial environment and to its intrinsic loss. We comment on how these results may be used to provide a quantitative framework for the design, selection, and optimization of artificial metamaterialmicrowave reflectors and other complex systems yet to be explored.

[1]  K. Hu,et al.  Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites , 2007 .

[2]  Jeonghoon Yoo,et al.  Structural optimization in magnetic devices by the homogenization design method , 2000 .

[3]  Heinz Raether,et al.  BOOKS: Pattern Recognition in Practice: Proceedings, International Workshop, Amsterdam, 21-23 May 1980; Optical Fiber Systems and Their Components: An Introduction; Excitation of Plasmons and Interband Transitions by Electrons. , 1980, Applied optics.

[4]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[5]  Zeng-min Shen,et al.  Microwave characteristics of sandwich composites with mesophase pitch carbon foams as core , 2004 .

[6]  C. Brosseau,et al.  Magnetic field dependence of the effective permittivity in BaTiO3∕Ni nanocomposites observed via microwave spectroscopy , 2008 .

[7]  B. G. Soares,et al.  Performance of radar absorbing materials by waveguide measurements for X- and Ku-band frequencies , 2002 .

[8]  Timothy D. Burchell,et al.  High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties , 2000 .

[9]  H. M. Musal,et al.  Thin-layer electromagnetic absorber design , 1989 .

[10]  C. Brosseau,et al.  Magnetization damping in two-component metal oxide micropowder and nanopowder compacts by broadband ferromagnetic resonance measurements , 2006 .

[11]  Hossein Mosallaei,et al.  Physical configuration and performance modeling of all-dielectric metamaterials , 2008 .

[12]  Ulrich Simon,et al.  Nanodispersions of conducting particles: preparation, microstructure and dielectric properties , 1999 .

[13]  Abderrahmane Beroual,et al.  Computational electromagnetics and the rational design of new dielectric heterostructures , 2003 .

[14]  V. Bregar,et al.  Advantages of ferromagnetic nanoparticle composites in microwave absorbers , 2004, IEEE Transactions on Magnetics.

[15]  V. Sridhar,et al.  Impedance analysis and electromagnetic interference shielding effectiveness of conductive carbon black reinforced microcellular EPDM rubber vulcanizates , 2008 .

[16]  David R. Smith,et al.  Full-wave simulations of electromagnetic cloaking structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Akhlesh Lakhtakia,et al.  Introduction to Complex Mediums for Optics and Electromagnetics , 2003 .

[18]  David J. Bergman,et al.  Physical Properties of Macroscopically Inhomogeneous Media , 1992 .

[19]  D. Chung Electromagnetic interference shielding effectiveness of carbon materials , 2001 .

[20]  Sung-soo Kim,et al.  M-hexaferrites with planar magneitc anisotropy and their application to high-frequency microwave absorber , 1999, IEEE International Magnetics Conference.

[21]  Ramakrishna Janaswamy,et al.  Oblique scattering from lossy periodic surfaces with applications to anechoic chamber absorbers , 1992 .

[22]  Ari Henrik Sihvola,et al.  Effective permittivity of mixtures: numerical validation by the FDTD method , 2000, IEEE Trans. Geosci. Remote. Sens..

[23]  J. Joo,et al.  Electrical properties and EMI shielding characteristics of polypyrrole-nylon 6 composite fabrics , 2003 .

[24]  C. Brosseau,et al.  Effective magnetic permeability of Ni and Co micro- and nanoparticles embedded in a ZnO matrix , 2005 .

[25]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[26]  R. Guo,et al.  Calculation of dielectric constant and loss of two-phase composites , 2003 .

[27]  Jae-Hee Oh,et al.  The microwave absorbing phenomena of ferrite microwave absorbers , 1993 .

[28]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Chunjiang Yao,et al.  Nano /spl alpha/-Fe/epoxy resin composite absorber coatings fabricated by thermal spraying technique , 2006, IEEE Transactions on Magnetics.

[30]  Sahrim Ahmad,et al.  Electromagnetic and absorption properties of some microwave absorbers , 2002 .

[31]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[32]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[33]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[34]  Ekmel Ozbay,et al.  Transmission and reflection properties of composite double negative metamaterials in free space , 2003 .

[35]  Christopher L. Holloway,et al.  Comparison of electromagnetic absorber used in anechoic and semi-anechoic chambers for emissions and immunity testing of digital devices , 1997 .

[36]  W. Emerson,et al.  Electromagnetic wave absorbers and anechoic chambers through the years , 1973 .

[37]  C. Brosseau,et al.  Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal oxides , 2008 .

[38]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[39]  C. Brosseau,et al.  Finite-difference time-domain simulation of heterostructures with inclusion of arbitrarily complex geometry , 2006 .

[40]  U. Yilmazer,et al.  Some microwave and mechanical properties of carbon fiber-polypropylene and carbon black-polypropylene composites , 1996 .

[41]  C. Brosseau,et al.  Electromagnetic and magnetic properties of multicomponent metal oxides heterostructures: Nanometer versus micrometer-sized particles , 2003 .

[42]  Christian Brosseau,et al.  Modelling and simulation of dielectric heterostructures: a physical survey from an historical perspective , 2006 .

[43]  V. Shalaev,et al.  Nanophotonics with surface plasmons , 2007 .

[44]  Duality and similarity properties of the effective permittivity of two-dimensional heterogeneous medium with inclusion of fractal geometry. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Christian Brosseau,et al.  Finite-element method for calculation of the effective permittivity of random inhomogeneous media. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[47]  C. Brosseau,et al.  Intrinsic resonant behavior of metamaterials by finite element calculations , 2006 .

[48]  V. N. Kisel,et al.  Development and simulation of microwave artificial magnetic composites utilizing nonmagnetic inclusions , 2003 .

[49]  A. Sihvola,et al.  Numerical testing of dielectric mixing rules by FDTD method , 1999 .

[50]  C. Brosseau,et al.  Numerical calculations of the intrinsic electrostatic resonances of artificial dielectric heterostructures , 2007 .

[51]  C. Brosseau,et al.  Possible manifestation of nonuniversality in some continuum percolation systems , 2008 .

[52]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[53]  S. Torquato,et al.  Optimal design of manufacturable three-dimensional composites with multifunctional characteristics , 2003 .

[54]  Xiaoyun Li,et al.  Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials , 2006 .

[55]  C. Brosseau,et al.  Intrinsic electrostatic resonances of heterostructures with negative permittivity from finite-element calculations: Application to core-shell inclusions , 2007 .

[56]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[57]  C. Brosseau,et al.  Effective complex permittivity of two-phase random composite media: A test of the two exponent phenomenological percolation equation , 2008 .

[58]  C. Brosseau,et al.  Finite-element modeling method for the prediction of the complex effective permittivity of two-phase random statistically isotropic heterostructures , 2005 .

[59]  Vladimir M. Shalaev,et al.  Optical properties of nanostructured random media , 2002 .

[60]  S. Riddell,et al.  Polypyrrole Based Microwave Absorbers , 1998 .

[61]  C. Brosseau,et al.  Effective permittivity of nanocomposite powder compacts , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[62]  Song Ma,et al.  Electromagnetic-wave absorption properties of FeCo nanocapsules and coral-like aggregates self-assembled by the nanocapsules , 2008 .

[63]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[64]  Yukio Hishikawa,et al.  Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region , 2003 .

[65]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[66]  Pieter G. Kik,et al.  SURFACE PLASMON NANOPHOTONICS , 2007 .

[67]  S. Torquato,et al.  Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity. , 2002, Physical review letters.

[68]  C. Brosseau,et al.  Spin wave spectroscopy and microwave losses in granular two-phase magnetic nanocomposites , 2007 .

[69]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[70]  N. Engheta,et al.  Parallel-plate metamaterials for cloaking structures. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  N. Engheta,et al.  Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights. , 2007, Optics express.

[72]  A. Lakhtakia,et al.  Electromagnetic fields in unconventional materials and structures , 2000 .

[73]  E. Tuncer,et al.  Non-Debye dielectric relaxation in binary dielectric mixtures (50-50): Randomness and regularity in mixture topology , 2002 .

[74]  S. Torquato Random Heterogeneous Materials , 2002 .

[75]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .