Structural Basis for Mechanical Force Regulation of the Adhesin FimH via Finger Trap-like β Sheet Twisting

[1]  David Boettiger,et al.  Mechanically Activated Integrin Switch Controls α5β1 Function , 2009, Science.

[2]  M. Humphries,et al.  Linking integrin conformation to function , 2009, Journal of Cell Science.

[3]  T. Springer,et al.  Transmission of allostery through the lectin domain in selectin-mediated cell adhesion , 2009, Proceedings of the National Academy of Sciences.

[4]  Timothy A. Springer,et al.  Structural basis for selectin mechanochemistry , 2009, Proceedings of the National Academy of Sciences.

[5]  Elspeth F Garman,et al.  Crystal structures of fibronectin-binding sites from Staphylococcus aureus FnBPA in complex with fibronectin domains , 2008, Proceedings of the National Academy of Sciences.

[6]  Viola Vogel,et al.  Biophysics of catch bonds. , 2008, Annual review of biophysics.

[7]  Lode Wyns,et al.  Intervening with Urinary Tract Infections Using Anti-Adhesives Based on the Crystal Structure of the FimH–Oligomannose-3 Complex , 2008, PloS one.

[8]  Olga Yakovenko,et al.  FimH Forms Catch Bonds That Are Enhanced by Mechanical Force Due to Allosteric Regulation* , 2008, Journal of Biological Chemistry.

[9]  R. Glockshuber,et al.  Infinite kinetic stability against dissociation of supramolecular protein complexes through donor strand complementation. , 2008, Structure.

[10]  B. Kidd,et al.  Integrin-like Allosteric Properties of the Catch Bond-forming FimH Adhesin of Escherichia coli* , 2008, Journal of Biological Chemistry.

[11]  R. Glockshuber,et al.  Crystal structure of the ternary FimC–FimFt–FimDN complex indicates conserved pilus chaperone–subunit complex recognition by the usher FimD , 2008, FEBS letters.

[12]  R. Glockshuber,et al.  NMR structure of the Escherichia coli type 1 pilus subunit FimF and its interactions with other pilus subunits. , 2008, Journal of molecular biology.

[13]  Timothy A. Springer,et al.  Structural plasticity in Ig superfamily domain 4 of ICAM-1 mediates cell surface dimerization , 2007, Proceedings of the National Academy of Sciences.

[14]  V. Yarov-Yarovoy,et al.  Interdomain Interaction in the FimH Adhesin of Escherichia coli Regulates the Affinity to Mannose* , 2007, Journal of Biological Chemistry.

[15]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[16]  Lina M. Nilsson,et al.  Weak Rolling Adhesion Enhances Bacterial Surface Colonization , 2006, Journal of bacteriology.

[17]  M. Shimaoka,et al.  Importance of force linkage in mechanochemistry of adhesion receptors. , 2006, Biochemistry.

[18]  H. Hashimoto,et al.  Recent structural studies of carbohydrate-binding modules , 2006, Cellular and Molecular Life Sciences CMLS.

[19]  T. Springer,et al.  Remodeling of the lectin–EGF-like domain interface in P- and L-selectin increases adhesiveness and shear resistance under hydrodynamic force , 2006, Nature Immunology.

[20]  Lina M. Nilsson,et al.  Elevated Shear Stress Protects Escherichia coli Cells Adhering to Surfaces via Catch Bonds from Detachment by Soluble Inhibitors , 2006, Applied and Environmental Microbiology.

[21]  Fabiana Bahna,et al.  Type II Cadherin Ectodomain Structures: Implications for Classical Cadherin Specificity , 2006, Cell.

[22]  Lina M. Nilsson,et al.  Catch-bond model derived from allostery explains force-activated bacterial adhesion. , 2006, Biophysical journal.

[23]  M. Arnaout,et al.  Integrin structure, allostery, and bidirectional signaling. , 2005, Annual review of cell and developmental biology.

[24]  T. Ratliff Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. , 2005, The Journal of urology.

[25]  Lawrence Shapiro,et al.  Specificity of cell-cell adhesion by classical cadherins: Critical role for low-affinity dimerization through beta-strand swapping. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  K C Holmes,et al.  The structure of the rigor complex and its implications for the power stroke. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[27]  Barry S. Coller,et al.  Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics , 2004, Nature.

[28]  Viola Vogel,et al.  Shear‐dependent ‘stick‐and‐roll’ adhesion of type 1 fimbriated Escherichia coli , 2004, Molecular microbiology.

[29]  D. Dykhuizen,et al.  Selection footprint in the FimH adhesin shows pathoadaptive niche differentiation in Escherichia coli. , 2004, Molecular biology and evolution.

[30]  Joseph R Luft,et al.  A deliberate approach to screening for initial crystallization conditions of biological macromolecules. , 2003, Journal of structural biology.

[31]  Raghavan Varadarajan,et al.  MODIP revisited: re-evaluation and refinement of an automated procedure for modeling of disulfide bonds in proteins. , 2003, Protein engineering.

[32]  Viola Vogel,et al.  Bacterial Adhesion to Target Cells Enhanced by Shear Force , 2002, Cell.

[33]  G. Waksman,et al.  Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection , 2002, Molecular microbiology.

[34]  P. Bongrand,et al.  Measuring Receptor/Ligand Interaction at the Single-Bond Level: Experimental and Interpretative Issues , 2002, Annals of Biomedical Engineering.

[35]  T. Sasaki,et al.  Structure and function of laminin LG modules. , 2000, Matrix biology : journal of the International Society for Matrix Biology.

[36]  W. G. Krebs,et al.  SURVEY AND SUMMARY The morph server: a standardized system for analyzing and visualizing macromolecular motions in a database framework , 2000 .

[37]  L. Shapiro,et al.  The adhesive binding site of cadherins revisited. , 1999, Biophysical chemistry.

[38]  V. Stojanoff,et al.  X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. , 1999, Science.

[39]  D E McRee,et al.  XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. , 1999, Journal of structural biology.

[40]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[41]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[42]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[43]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[44]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[45]  D. Torney,et al.  The reaction-limited kinetics of membrane-to-surface adhesion and detachment , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[46]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[47]  Michael Loran Dustin,et al.  Force as a facilitator of integrin conformational changes during leukocyte arrest on blood vessels and antigen-presenting cells. , 2007, Immunity.

[48]  Bruce A Johnson,et al.  Using NMRView to visualize and analyze the NMR spectra of macromolecules. , 2004, Methods in molecular biology.

[49]  M. Pufall,et al.  Autoinhibitory domains: modular effectors of cellular regulation. , 2002, Annual review of cell and developmental biology.

[50]  M. Gerstein,et al.  The morph server: a standardized system for analyzing and visualizing macromolecular motions in a database framework. , 2000, Nucleic acids research.

[51]  C R Kissinger,et al.  Rapid automated molecular replacement by evolutionary search. , 1999, Acta crystallographica. Section D, Biological crystallography.

[52]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[53]  A. Brünger Assessment of phase accuracy by cross validation: the free R value. Methods and applications. , 1993, Acta crystallographica. Section D, Biological crystallography.

[54]  J. Engel 8 – Structure and Function of Laminin , 1993 .