Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis.

[1]  John M L Ebos,et al.  Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. , 2009, Cancer cell.

[2]  P. Kelly,et al.  Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. , 2009, Journal of neurosurgery.

[3]  M. Mrugala,et al.  Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. , 2009, Neurology.

[4]  K. Aldape,et al.  VEGF Trap induces antiglioma effect at different stages of disease. , 2008, Neuro-oncology.

[5]  P. Kelly,et al.  High-grade glioma before and after treatment with radiation and Avastin: initial observations. , 2008, Neuro-oncology.

[6]  Gabriele Bergers,et al.  Modes of resistance to anti-angiogenic therapy , 2008, Nature Reviews Cancer.

[7]  S. Vandenberg,et al.  HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. , 2008, Cancer cell.

[8]  K. Kimura,et al.  Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. , 2007, The Journal of clinical investigation.

[9]  G. Demetri,et al.  Molecular basis for sunitinib efficacy and future clinical development , 2007, Nature Reviews Drug Discovery.

[10]  R. S. Johnson,et al.  Loss of vascular endothelial growth factor expression reduces vascularization, but not growth, of tumors lacking the Von Hippel–Lindau tumor suppressor gene , 2007, Oncogene.

[11]  R. Roskoski,et al.  Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. , 2007, Biochemical and biophysical research communications.

[12]  Tracy T Batchelor,et al.  AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. , 2007, Cancer cell.

[13]  J. Folkman Angiogenesis: an organizing principle for drug discovery? , 2007, Nature reviews. Drug discovery.

[14]  K. Neurath,et al.  Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation , 2006, Oncogene.

[15]  Holger Gerhardt,et al.  Pericytes limit tumor cell metastasis. , 2006, The Journal of clinical investigation.

[16]  Oriol Casanovas,et al.  Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. , 2005, Cancer cell.

[17]  R. Weil,et al.  Breast cancer metastasis to the central nervous system. , 2005, The American journal of pathology.

[18]  Kristian Pietras,et al.  A multitargeted, metronomic, and maximum-tolerated dose "chemo-switch" regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  G. Sledge,et al.  Can tumor angiogenesis be inhibited without resistance? , 2005, EXS.

[20]  R. D'Amato,et al.  Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. , 2005, Cancer cell.

[21]  A. Howell,et al.  Incidence of cerebral metastases in patients treated with trastuzumab for metastatic breast cancer , 2004, British Journal of Cancer.

[22]  R. Kerbel,et al.  Possible Mechanisms of Acquired Resistance to Anti-angiogenic Drugs: Implications for the Use of Combination Therapy Approaches , 2004, Cancer and Metastasis Reviews.

[23]  Tarik Tihan,et al.  The hypoxic response of tumors is dependent on their microenvironment. , 2003, Cancer cell.

[24]  R. Timmerman,et al.  Occult central nervous system involvement in patients with metastatic breast cancer: prevalence, predictive factors and impact on overall survival. , 2003, Annals of oncology : official journal of the European Society for Medical Oncology.

[25]  E. Winer,et al.  Central nervous system metastases in women who receive trastuzumab‐based therapy for metastatic breast carcinoma , 2003, Cancer.

[26]  D. Hanahan,et al.  Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. , 2003, The Journal of clinical investigation.

[27]  P. Comoglio,et al.  Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. , 2003, Cancer cell.

[28]  D. Hanahan,et al.  Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis. , 2002, Cancer cell.

[29]  D. Hanahan,et al.  VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. , 2002, Cancer cell.

[30]  R. Hill,et al.  Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. , 2001, Cancer research.

[31]  M. Westphal,et al.  Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. , 2001, Cancer research.

[32]  M. Westphal,et al.  Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. , 2000, Neoplasia.

[33]  R. Kerbel Tumor angiogenesis: past, present and the near future. , 2000, Carcinogenesis.

[34]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[35]  Mihaela Skobe,et al.  Halting angiogenesis suppresses carcinoma cell invasion , 1997, Nature Medicine.

[36]  D. Hanahan,et al.  Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis , 1996, Cell.

[37]  D. Hanahan,et al.  Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Warren,et al.  Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. , 1995, The Journal of clinical investigation.

[39]  D. Ingber,et al.  Inhibition of angiogenesis. , 1992, Seminars in cancer biology.

[40]  T. Stijnen,et al.  The value of immunohistochemistry for collagen iv expression in colorectal carcinomas , 1991, Cancer.

[41]  R. Hill,et al.  Effects of reoxygenation on cells from hypoxic regions of solid tumors: anticancer drug sensitivity and metastatic potential. , 1990, Journal of the National Cancer Institute.

[42]  D. Hanahan,et al.  Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. , 1985, Nature.

[43]  L. G. Koss,et al.  Cervical Cancer , 1981, Current Topics in Pathology.

[44]  J. Folkman Tumor angiogenesis: therapeutic implications. , 1971, The New England journal of medicine.