Evidence of biotic recovery through the Cretaceous/Palaeogene transition from the Mahadeo-Cherrapunji succession in the Meghalaya shelf, India

[1]  Sambit Ghosh,et al.  Carbon reservoir perturbations induced by Deccan volcanism: Stable isotope and biomolecular perspectives from shallow marine environment in Eastern India , 2021, Geobiology.

[2]  R. K. Gupta,et al.  Thermal and Physical Properties of Deccan Basalt and Neoarchean Basement Cores From a Deep Scientific Borehole in the Koyna−Warna Seismogenic Region, Deccan Volcanic Province, Western India: Implications on Thermal Modeling and Seismogenesis , 2021, Earth and Space Science.

[3]  R. Pancost,et al.  Minor changes in biomarker assemblages in the aftermath of the Cretaceous-Paleogene mass extinction event at the Agost distal section (Spain) , 2021 .

[4]  J. Spangenberg,et al.  Mercury linked to Deccan Traps volcanism, climate change and the end-Cretaceous mass extinction , 2020, Global and Planetary Change.

[5]  J. Shrivastava,et al.  Cretaceous/Palaeogene boundary transition induced lattice defects in illite and kaolinite associated with the Um-Sohryngkew river section, Meghalaya, India , 2020 .

[6]  G. Keller,et al.  U-Pb zircon age constraints on the earliest eruptions of the Deccan Large Igneous Province, Malwa Plateau, India , 2020 .

[7]  B. Schoene,et al.  An evaluation of Deccan Traps eruption rates using geochronologic data , 2020 .

[8]  P. Bown,et al.  On impact and volcanism across the Cretaceous-Paleogene boundary , 2020, Science.

[9]  J. Morgan,et al.  The first day of the Cenozoic , 2019, Proceedings of the National Academy of Sciences.

[10]  S. Self,et al.  The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary , 2019, Science.

[11]  G. Keller,et al.  U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction , 2019, Science.

[12]  C. Carvallo,et al.  Deccan volcanism induced high-stress environment during the Cretaceous–Paleogene transition at Zumaia, Spain: Evidence from magnetic, mineralogical and biostratigraphic records , 2018 .

[13]  J. Spangenberg,et al.  Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene , 2017 .

[14]  Guangya Zhang,et al.  Major transgression during Late Cretaceous constrained by basin sediments in northern Africa: implication for global rise in sea level , 2017, Frontiers of Earth Science.

[15]  J. Barbosa,et al.  Mercury enrichment and Hg isotopes in Cretaceous–Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts , 2016 .

[16]  A. Mostafa,et al.  Biomarker characteristics of the Turonian–Eocene succession, Belayim oilfields, central Gulf of Suez, Egypt , 2016 .

[17]  J. Shrivastava,et al.  Mineral chemistry of clays associated with the Late Cretaceous-early Palaeogene succession of the Um-Sohryngkew river section of Meghalaya, India: Palaeoenvironmental inferences and K/Pg transition , 2015, Journal of the Geological Society of India.

[18]  J. Shrivastava,et al.  Physils and organic matter-base palaeoenvironmental records of the K/Pg boundary transition from the late Cretaceous-early Palaeogene succession of the Um-Sohryngkew River section of Meghalaya, India , 2015 .

[19]  D. Valentine,et al.  Latent hydrocarbons from cyanobacteria , 2015, Proceedings of the National Academy of Sciences.

[20]  M. Richards,et al.  State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact , 2015, Science.

[21]  J. Shrivastava,et al.  Polycyclic aromatic hydrocarbon compound excursions and K/Pg transition in the late Cretaceous–early Palaeogene succession of the Um Sohryngkew river section, Meghalaya , 2015 .

[22]  J. Spangenberg,et al.  A multi-proxy approach to decode the end-Cretaceous mass extinction , 2015 .

[23]  P. Renne,et al.  High-resolution chronostratigraphy of the terrestrial Cretaceous-Paleogene transition and recovery interval in the Hell Creek region, Montana , 2015 .

[24]  F. A. McInerney,et al.  Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA , 2015 .

[25]  S. Bowring,et al.  U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction , 2015, Science.

[26]  A. Elazzazy,et al.  Microalgal lipids biochemistry and biotechnological perspectives. , 2014, Biotechnology advances.

[27]  J. Mirão,et al.  Atmospheric halogen and acid rains during the main phase of Deccan eruptions: Magnetic and mineral evidence , 2014 .

[28]  G. Keller Deccan volcanism, the Chicxulub impact, and the end-Cretaceous mass extinction: Coincidence? Cause and effect? , 2014 .

[29]  D. Mohabey,et al.  Palynology and clay mineralogy of the Deccan volcanic associated sediments of Saurashtra, Gujarat: Age and paleoenvironments , 2014, Journal of Earth System Science.

[30]  B. Haq Cretaceous eustasy revisited , 2014 .

[31]  R. Pancost,et al.  12.15 – Biomarkers for Terrestrial Plants and Climate , 2013 .

[32]  J. Shrivastava,et al.  Chemico-mineralogical attributes of clays from the late Cretaceous–early Palaeogene succession of the Um Sohryngkew river section of Meghalaya, India: Palaeoenvironmental inferences and the K/Pg boundary , 2013 .

[33]  J. Spangenberg,et al.  Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous–Tertiary boundary hiatus , 2013, Geological Magazine.

[34]  P. Renne,et al.  Time Scales of Critical Events around the Cretaceous-paleogene Boundary , 2022 .

[35]  C. Pedrós-Alió,et al.  Ecology of marine Bacteroidetes: a comparative genomics approach , 2013, The ISME Journal.

[36]  J. Kirschvink,et al.  Extinction patterns, δ18 O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: Links with Deccan volcanism , 2012 .

[37]  M. Joseph,et al.  Assessment of Organic Matter Sources in the Tropical Mangrove Ecosystems of Cochin, Southwest India , 2012 .

[38]  S. Mukhopadhyay Guembelitria (foraminifera) in the upper cretaceous-lower paleocene succession of the Langpar Formation, India and its paleoenvironmental implication , 2012, Journal of the Geological Society of India.

[39]  D. Fleitmann,et al.  Environmental effects of Deccan volcanism across the Cretaceous-Tertiary transition in Meghalaya, India , 2011 .

[40]  P. Crill,et al.  Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic , 2011 .

[41]  Elisabetta Pierazzo,et al.  The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary , 2010, Science.

[42]  R. Summons,et al.  Rapid Resurgence of Marine Productivity After the Cretaceous-Paleogene Mass Extinction , 2009, Science.

[43]  T. Thordarson,et al.  Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section , 2009 .

[44]  K. Sigler,et al.  Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms. , 2009, Progress in lipid research.

[45]  S. Nodder,et al.  Sources of organic matter in a coastal marine environment: Evidence from n-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand , 2009 .

[46]  M. Kominz,et al.  Late Cretaceous to Miocene sea‐level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis , 2008 .

[47]  S. Mukhopadhyay Planktonic foraminiferal succession in late Cretaceous to early Palaeocene strata in Meghalaya, India , 2008 .

[48]  A. A. Tantawy,et al.  High stress late Maastrichtian – early Danian palaeoenvironment in the Neuquén Basin, Argentina , 2007 .

[49]  S. Bajpai,et al.  40K–40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration , 2007 .

[50]  W. Jeng Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments , 2006 .

[51]  Yunping Xu,et al.  A molecular marker-based assessment of sedimentary organic matter sources and distributions in Florida Bay , 2006, Hydrobiologia.

[52]  P. Leinweber,et al.  Origin and fate of soil lipids in a Phaeozem under rye and maize monoculture in Central Germany , 2006, Biology and Fertility of Soils.

[53]  C. Schubert,et al.  Sources and fate of amino sugars in coastal Peruvian sediments , 2006 .

[54]  K. Kaiho,et al.  Abrupt and massive influx of terrestrial biomarkers into the marine environment at the Cretaceous–Tertiary boundary, Caravaca, Spain , 2005 .

[55]  I. Metcalfe,et al.  Ocean Plate Stratigraphy in East and Southeast Asia , 2005 .

[56]  J. Volkman Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways , 2005 .

[57]  G. Keller Biotic effects of late Maastrichtian mantle plume volcanism: implications for impacts and mass extinctions , 2005 .

[58]  Chuanmin Hu,et al.  The importance of continental margins in the global carbon cycle , 2005 .

[59]  C. Walters,et al.  The Biomarker Guide , 2004 .

[60]  A. Pardo,et al.  Disaster opportunists Guembelitrinidae: index for environmental catastrophes , 2004 .

[61]  R. Berner,et al.  CO2 as a Primary Driver of Phanerozoic Climate Change , 2003 .

[62]  Huayu Lu,et al.  Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau , 2003 .

[63]  P. Meyers Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes , 2003 .

[64]  Kirk R. Johnson,et al.  Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous–Paleogene boundary , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Raine,et al.  Indication of Global Deforestation at the Cretaceous-Tertiary Boundary by New Zealand Fern Spike , 2001, Science.

[66]  T. Fenchel Marine Bugs and Carbon Flow , 2001, Science.

[67]  G. Eglinton,et al.  An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes , 2000 .

[68]  A. Hallam Mass extinctions and sea-level changes , 1999 .

[69]  A. Shimoyama,et al.  Characterization of n-alkanes, pristane and phytane in the Cretaceous/Tertiary boundary sediments at Kawaruppu, Hokkaido, Japan. , 1999 .

[70]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[71]  K. Kaiho,et al.  Spike of pyrosynthetic polycyclic aromatic hydrocarbons associated with an abrupt decrease in δ13C of a terrestrial biomarker at the Cretaceous-Tertiary boundary at Caravaca, Spain , 1999 .

[72]  R. J. Thompson,et al.  Fatty acids as trophic markers of phytoplankton blooms in the Bahía Blanca estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada) , 1997 .

[73]  P. Meyers,et al.  Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes , 1997 .

[74]  R. Bourbonniere,et al.  Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie , 1996 .

[75]  M. Benton,et al.  Diversification and extinction in the history of life. , 1995, Science.

[76]  K. Reitan,et al.  EFFECT OF NUTRIENT LIMITATION ON FATTY ACID AND LIPID CONTENT OF MARINE MICROALGAE 1 , 1994 .

[77]  P. N. Shukla,et al.  Chemical profiles in K/T boundary section of Meghalaya, India: Cometary, asteroidal or volcanic , 1994 .

[78]  B. E. Torkelson,et al.  A revised carbon preference index , 1993 .

[79]  G. Keller,et al.  Stable isotope, TOC and CaCO3 record across the cretaceous/tertiary boundary at El Kef, Tunisia , 1989 .

[80]  H. Schwarcz,et al.  Carbon isotopes and fatty acids analysis of the sediments of Negro harbour, Nova Scotia, Canada , 1989 .

[81]  J. Dahl,et al.  Organic geochemical evidence for global fires at the Cretaceous/Tertiary boundary , 1989, Nature.

[82]  I. Gilmour,et al.  Global fire at the Cretaceous– Tertiary boundary , 1988, Nature.

[83]  J. Grimalt,et al.  Sources and occurrence of C12C22n-alkane distributions with even carbon-number preference in sedimentary environments , 1987 .

[84]  G. Ourisson,et al.  Predictive microbial biochemistry — from molecular fossils to procaryotic membranes , 1982 .

[85]  P. Cranwell Branched/cyclic alkanols in lacustrine sediments (Great Britain): Recognition of iso- and anteiso-branching and stereochemical analysis of homologous alkan-2-ols , 1980 .

[86]  B. Simoneit,et al.  Organic geochemical indicators of palaeoenvironmental conditions of sedimentation , 1978 .

[87]  S. Gaskell,et al.  Lipids of Recent sediments, Part I: Straight-chain hydrocarbons and carboxylic acids of some temperate lacustrine and sub-tropical lagoonal/tidal flat sediments , 1976 .

[88]  P. Cranwell Monocarboxylic acids in lake sediments: Indicators, derived from terrestrial and aquatic biota, of paleoenvironmental trophic levels , 1974 .

[89]  J. Oró,et al.  Hydrocarbons of geochemical significance in microscopic algae , 1970 .

[90]  Geoffrey Eglinton,et al.  Leaf Epicuticular Waxes , 1967, Science.

[91]  Y. Nagappa Foraminiferal biostratigraphy of the Cretaceous-Eocene succession in the India-Pakistan-Burma region , 1959 .

[92]  Michael Gross AN INVESTIGATION OF PALEO-WILDFIRES DURING THE CRETACEOUS-PALEOGENE (K-PG) BOUNDARY AT EL KEF, TUNISIA , 2016 .

[93]  D. I. Givens,et al.  Fatty Acid Composition , 2016 .

[94]  K. Kaiho,et al.  Significant changes in land vegetation and oceanic redox across the Cretaceous/Paleogene boundary , 2013 .

[95]  Y. Lee,et al.  Paleoclimates in Asia during the cretaceous : their variations, causes, and biotic and environmental responses , 2007 .

[96]  G. Eglinton,et al.  MOLECULAR COMPOSITION OF THREE SEDIMENTS FROM HOLE 717 C : THE BENGAL FAN , 2006 .

[97]  Jianfang Hu,et al.  Fatty acid composition of surface sediments in the subtropical Pearl River estuary and adjacent shelf, Southern China , 2006 .

[98]  J. Villeneuve,et al.  Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. , 2004, Marine pollution bulletin.

[99]  A. Randriamanantenasoa,et al.  Age and paleoenvironment of the Maastrichtian to Paleocene of the Mahajanga Basin, Madagascar: a multidisciplinary approach , 2003 .

[100]  R. Evershed,et al.  Organic geochemical studies of soils from the Rothamsted Classical Experiments - I. Total lipid extracts, solvent insoluble residues and humic acids from Broadbalk Wilderness , 1997 .

[101]  A. Pardo,et al.  Latest Maastrichtian and K/T boundary foraminiferal turnover and environmental changes at Agost, Spain , 1996 .

[102]  N. Silverberg,et al.  Biogeochemistry of organic matter in the Laurentian Trough, I. Composition and vertical fluxes of rapidly settling particles , 1996 .

[103]  R. Beck,et al.  Stratigraphic evidence for an early collision between northwest India and Asia , 1995, Nature.

[104]  Â. Pinto,et al.  Novel series of tricyclic aromatic terpanes characterized in Tasmanian tasmanite , 1992 .

[105]  Irene Mueller-Harvey,et al.  Lipid biomarkers in marine ecology , 1987 .

[106]  R. Parkes Analysis of microbial communities within sediments using biomarkers , 1987 .

[107]  A. Mann,et al.  Geochemical Characteristics of Lacustrine Source Rocks: A Combined Palynological/Molecular Study of a Tertiary Sequence from Offshore China , 1987 .

[108]  J. Volkman A review of sterol markers for marine and terrigenous organic matter , 1986 .

[109]  P. Albrecht,et al.  The microbial input in carbonate-anhydrite facies of a sabkha palaeoenvironment from Guatemala: A molecular approach , 1986 .

[110]  G. Eglinton,et al.  Lipids of aquatic organisms as potential contributors to lacustrine sediments—II☆ , 1984 .