Genetic algorithms compared to other techniques for pipe optimization

The genetic algorithm technique is a relatively new optimization technique. In this paper we present a methodology for optimizing pipe networks using genetic algorithms. Unknown decision variables are coded as binary strings. We investigate a three-operator genetic algorithm comprising reproduction, crossover, and mutation. Results are compared with the techniques of complete enumeration and nonlinear programming. We apply the optimization techniques to a case study pipe network. The genetic algorithm technique finds the global optimum in relatively few evaluations compared to the size of the search space.

[1]  Alan A. Smith,et al.  Application of MINOS to water collection and distribution networks , 1985 .

[2]  David E. Goldberg,et al.  Control system optimization using genetic algorithms , 1992 .

[3]  David E. Goldberg,et al.  Genetic Algorithms and Computer-Assisted Music Composition , 1991, ICMC.

[4]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[5]  David E. Goldberg,et al.  Genetic Algorithms in Pipeline Optimization , 1987 .

[6]  Larry W. Mays,et al.  Optimal Reliability‐Based Design of Pumping and Distribution Systems , 1990 .

[7]  Larry W. Mays,et al.  Optimization Model for Water Distribution System Design , 1989 .

[8]  Alan A. Smith,et al.  A methodology for optimal design of pipe distribution networks , 1987 .

[9]  K. Lansey,et al.  Reliability‐Based Optimization Model for Water Distribution Systems , 1987 .

[10]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[11]  E. Downey Brill,et al.  Optimization of Looped Water Distribution Systems , 1981 .

[12]  Johannes Gessler,et al.  Computer aided optimization of water distribution networks , 1990 .

[13]  U. Shamir,et al.  Design of optimal water distribution systems , 1977 .

[14]  David B. Skillicorn,et al.  Pascal for Engineers , 1988 .

[15]  Larry W. Mays,et al.  Water Distribution System Design Under Uncertainties , 1989 .

[16]  Ralf G. Cembrowicz,et al.  Optimization of urban and regional water supply systems , 1977 .

[17]  David E. Goldberg,et al.  ENGINEERING OPTIMIZATION VIA GENETIC ALGORITHM, IN WILL , 1986 .

[18]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[19]  I. C. Goulter Current and future use of systems analysis in water distribution network design , 1987 .

[20]  Johannes Gessler Pipe Network Optimization by Enumeration , 1985 .

[21]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[22]  Jaak Monbaliu,et al.  Computer aided design of pipe networks , 1990 .

[23]  Linus Schrage,et al.  Modeling and Optimization With Gino , 1986 .

[24]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .