On enumeration problems in Lie-Butcher theory

The algebraic structure underlying non-commutative Lie-Butcher series is the free Lie algebra over ordered trees. In this paper we present a characterization of this algebra in terms of balanced Lyndon words over a binary alphabet. This yields a systematic manner of enumerating terms in non-commutative Lie-Butcher series.

[1]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[2]  Charles James Hargreave On the Solution of Linear Differential Equations , 1848 .

[3]  D.J.Broadhurst On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory , 1996 .

[4]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[5]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[6]  H. Munthe-Kaas Runge-Kutta methods on Lie groups , 1998 .

[7]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[8]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[9]  Jean-Pierre Duval,et al.  Generation of a section of conjugation classes and Lyndon word tree of limited length , 1988 .

[10]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[11]  J. C. Simo,et al.  Conserving algorithms for the dynamics of Hamiltonian systems on lie groups , 1994 .

[12]  Ernst Hairer,et al.  On the Butcher group and general multi-value methods , 1974, Computing.

[13]  Antonella Zanna,et al.  Numerical integration of differential equations on homogeneous manifolds , 1997 .

[14]  Arne Marthinsen,et al.  Runge-Kutta Methods Adapted to Manifolds and Based on Rigid Frames , 1999 .

[15]  P. Crouch,et al.  Numerical integration of ordinary differential equations on manifolds , 1993 .

[16]  Philippe Andary Finely homogeneous computations in free Lie algebras , 1997, Discret. Math. Theor. Comput. Sci..

[17]  H. Munthe-Kaas,et al.  Computations in a free Lie algebra , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  H. Munthe-Kaas High order Runge-Kutta methods on manifolds , 1999 .

[19]  David J. Broadhurst,et al.  On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory , 1996 .

[20]  C. Reutenauer Free Lie Algebras , 1993 .

[21]  A. Iserles,et al.  On the solution of linear differential equations in Lie groups , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Jean-Pierre Duval,et al.  Génération d'une Section des Classes de Conjugaison et Arbre des Mots de Lyndon de Longueur Bornée , 1988, Theor. Comput. Sci..

[23]  J. Butcher Coefficients for the study of Runge-Kutta integration processes , 1963, Journal of the Australian Mathematical Society.

[24]  Christian Brouder,et al.  Runge–Kutta methods and renormalization , 2000 .

[25]  Antonella Zanna,et al.  Collocation and Relaxed Collocation for the Fer and the Magnus Expansions , 1999 .

[26]  H. Munthe-Kaas Lie-Butcher theory for Runge-Kutta methods , 1995 .