A Most Enantioselective Surface: Tartaric Acid on all Surfaces Vicinal to Cu(110).

Enantioselective chemistry on intrinsically chiral surfaces is the quintessential form of structure sensitive surface chemistry, arising purely from the dissymmetry of the surface structure. Identification or design of chiral surface structures that maximize enantioselectivity for a given processes is extremely challenging because of the limited magnitude of the enantiospecific interaction energetics of chiral molecules with chiral surfaces. Using spherically shaped Cu single crystals exposing surfaces with a continuous 2D distribution of crystallographic orientations, we have mapped the enantiospecific surface reaction kinetics of tartaric acid decomposition across surface orientation space. These measurements reveal both the mechanistic origin of enantioselectivity and identify the structural features of the most enantiospecific surface orientation.

[1]  A. Gellman,et al.  Initiation of Vacancy-Mediated, Surface Explosion Reactions: Tartaric and Aspartic Acid on Cu Surfaces , 2019, The Journal of Physical Chemistry C.

[2]  J. Switzer,et al.  Epitaxial Electrodeposition of Chiral Metal Surfaces on Silicon(643). , 2018, Journal of the American Chemical Society.

[3]  K. Ernst,et al.  Chiral molecules adsorbed on a solid surface: Tartaric acid diastereomers and their surface explosion on Cu(111). , 2018, Chirality.

[4]  D. Armstrong,et al.  Chiral surfaces: The many faces of chiral recognition , 2017 .

[5]  A. Gellman,et al.  Structure-sensitive enantiospecific adsorption on naturally chiral Cu(hkl)R&S surfaces , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Xu Feng,et al.  Superenantioselective chiral surface explosions. , 2013, Journal of the American Chemical Society.

[7]  A. Gellman,et al.  Enantioselective separation on naturally chiral metal surfaces: D,L-aspartic acid on Cu(3,1,17)(R&S) surfaces. , 2013, Angewandte Chemie.

[8]  E. Sykes,et al.  A Window on Surface Explosions: Tartaric Acid on Cu(110) , 2013 .

[9]  E. Sykes,et al.  Surface Structure Spread Single Crystals (S4C): Preparation and characterization , 2013 .

[10]  A. Gellman Chiral surfaces: accomplishments and challenges. , 2010, ACS nano.

[11]  F. Zaera Chiral Modification of Solid Surfaces : A Molecular View , 2008 .

[12]  D. Sholl,et al.  The Real Structure of Naturally Chiral Cu{643} , 2008 .

[13]  G. Ertl Reactions at surfaces: from atoms to complexity (Nobel Lecture). , 2008, Angewandte Chemie.

[14]  K. Ernst,et al.  Stereoisomeric influence on 2D lattice structure: achiral meso‐tartaric acid versus chiral tartaric acid , 2006 .

[15]  R. Fasel,et al.  Homochiral conglomerates and racemic crystals in two dimensions: tartaric acid on Cu(110). , 2005, Chemistry.

[16]  D. Sholl,et al.  Enantioselective separation on a naturally chiral surface. , 2004, Journal of the American Chemical Society.

[17]  R. Fasel,et al.  Chiral recognition in surface explosion. , 2004, Journal of the American Chemical Society.

[18]  P. Poizot,et al.  Enantiospecific electrodeposition of a chiral catalyst , 2003, Nature.

[19]  D. Sholl,et al.  Chiral selection on inorganic crystalline surfaces , 2003, Nature materials.

[20]  D. Sholl,et al.  Atomically Detailed Models of the Effect of Thermal Roughening on the Enantiospecificity of Naturally Chiral Platinum Surfaces , 2002 .

[21]  V. Humblot,et al.  Chemical Transformations, Molecular Transport, and Kinetic Barriers in Creating the Chiral Phase of (R, R)-Tartaric Acid on Cu(110) , 2002 .

[22]  R. Raval,et al.  Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules , 2000, Nature.

[23]  C. Mcfadden,et al.  Adsorption of Chiral Alcohols on “Chiral” Metal Surfaces , 1996 .

[24]  G. Somorjai,et al.  Structure sensitivity in the iron single-crystal catalysed synthesis of ammonia , 1981, Nature.

[25]  A. T. Gwathmey,et al.  Some Experiments Showing the Directional Reactivities of Single Crystals of Copper , 1940 .