Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers

Film-coupled nanoparticle systems have proven a reliable platform for exploring the field enhancement associated with sub-nanometer sized gaps between plasmonic nanostructures. In this Letter, we present a side-by-side comparison of the spectral properties of film-coupled plasmon-resonant, gold nanoparticles, with dielectric spacer layers fabricated either using atomic layer deposition or using organic layers (polyelectrolytes or self-assembled monolayers of molecules). In either case, large area, uniform spacer layers with sub-nanometer thicknesses can be accurately deposited, allowing extreme coupling regimes to be probed. The observed spectral shifts of the nanoparticles as a function of spacer layer thickness are similar for the organic and inorganic films and are consistent with numerical calculations taking into account the nonlocal response of the metal.

[1]  S. George,et al.  Low-Temperature Al2O3 Atomic Layer Deposition , 2004 .

[2]  David R. Smith,et al.  Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. , 2008, Nano letters.

[3]  Prashant Nagpal,et al.  Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. , 2011, ACS nano.

[4]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[5]  David R. Smith,et al.  Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[7]  P. Kik,et al.  Wide-Band Spectral Control of Au Nanoparticle Plasmon Resonances on a Thermally and Chemically Robust Sensing Platform , 2013 .

[8]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[9]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[10]  J. Pendry,et al.  Collection and concentration of light by touching spheres: a transformation optics approach. , 2010, Physical review letters.

[11]  G. Whitesides,et al.  Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold , 1989 .

[12]  R. Olmon,et al.  Optical dielectric function of gold , 2012 .

[13]  Arto V. Nurmikko,et al.  Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime , 2004 .

[14]  Xianji Piao,et al.  Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves , 2013, Nature Communications.

[15]  David R. Smith,et al.  Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. , 2010, Nano letters.

[16]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[17]  Wenqi Zhu,et al.  Lithographically fabricated optical antennas with gaps well below 10 nm. , 2011, Small.

[18]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[19]  Jing Zhao,et al.  Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. , 2006, Journal of the American Chemical Society.

[20]  David R. Smith,et al.  Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves , 2012 .

[21]  David R. Smith,et al.  Far-field Analysis of Axially Symmetric Three-dimensional Directional Cloaks References and Links , 2022 .

[22]  Sang‐Hyun Oh,et al.  Engineering metallic nanostructures for plasmonics and nanophotonics , 2012, Reports on progress in physics. Physical Society.

[23]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[24]  Evelyn L. Hu,et al.  Large spontaneous emission enhancement in plasmonic nanocavities , 2012, Nature Photonics.

[25]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.