On variational formulations for the Stokes equations with nonstandard boundary conditions

Des formules variationnelles sont donnees pour l'equation de Stokes avec des conditions au bord non-standards. Ces conditions font que l'equation de la pression est independante des autres variables, et que l'equation de la vitesse peut etre formulee faiblement de telle sorte que la divergence des fonctions tests ne soit pas soumise a des conditions restrictives, et que la divergence des solutions au probleme variationnel soit nulle. Nous donnons des approximations par elements finis bases sur cette formulation, et des estimations d'erreur

[1]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[2]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[3]  V. Girault,et al.  Incompressible Finite Element Methods for Navier-Stokes Equations with Nonstandard Boundary Conditions in R 3 , 1988 .

[4]  Olivier Pironneau,et al.  A nouveau sur les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression , 1987 .

[5]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[6]  Mixed finite element approximation of the vector potential , 1987 .

[7]  K. O. Friedrichs,et al.  Differential forms on riemannian manifolds , 1955 .

[8]  V. Georgescu,et al.  Some boundary value problems for differential forms on compact riemannian manifolds , 1979 .

[9]  Abderrahmane Bendali,et al.  A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three dimensional domains , 1985 .

[10]  V. Girault,et al.  Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in ³ , 1988 .

[11]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[12]  J. Pasciak,et al.  The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms , 1991 .

[13]  Finite element approximation of electromagnetic fields in three dimensional space , 1980 .

[14]  J. Z. Zhu,et al.  The finite element method , 1977 .

[15]  A Lagrange multiplier method for the interface equations from electromagnetic applications , 1993 .