On the nonenumerative path delay fault simulation problem

The problem of determining the exact number of path delay faults that a given test set detects in a combinational circuit is shown to be intractable. This result further strengthens the importance of several recently proposed pessimistic heuristics as well as exact exponential algorithms for this nonenumerative problem. A polynomial time pessimistic algorithm which returns higher coverage than algorithms with the same order of complexity and at the same time compacts the test set is also presented.

[1]  Spyros Tragoudas,et al.  ATPG for path delay faults without path enumeration , 2001, Proceedings of the IEEE 2001. 2nd International Symposium on Quality Electronic Design.

[2]  Kwang-Ting Cheng,et al.  Delay testing for non-robust untestable circuits , 1993, Proceedings of IEEE International Test Conference - (ITC).

[3]  Spyros Tragoudas,et al.  Exact path delay grading with fundamental BDD operations , 2001, Proceedings International Test Conference 2001 (Cat. No.01CH37260).

[4]  Spyros Tragoudas,et al.  ATPD: an automatic test pattern generator for path delay faults , 1996, Proceedings International Test Conference 1996. Test and Design Validity.

[5]  Janak H. Patel,et al.  Improving a nonenumerative method to estimate path delay fault coverage , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  B. Kapoor An efficient method for computing exact path delay fault coverage , 1995, Proceedings the European Design and Test Conference. ED&TC 1995.

[7]  Vishwani D. Agrawal,et al.  An exact non-enumerative fault simulator for path-delay faults , 1996, Proceedings International Test Conference 1996. Test and Design Validity.

[8]  Michael Pabst,et al.  RESIST: a recursive test pattern generation algorithm for path delay faults , 1994, EURO-DAC '94.

[9]  Michael H. Schulz,et al.  Parallel Pattern Fault Simulation of Path Delay Faults , 1989, 26th ACM/IEEE Design Automation Conference.

[10]  Irith Pomeranz,et al.  An efficient nonenumerative method to estimate the path delay fault coverage in combinational circuits , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  Spyros Tragoudas Accurate path delay fault coverage is feasible , 1999, International Test Conference 1999. Proceedings (IEEE Cat. No.99CH37034).

[12]  Melvin A. Breuer,et al.  Digital systems testing and testable design , 1990 .

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  Janak H. Patel,et al.  Improving accuracy in path delay fault coverage estimation , 1996, Proceedings of 9th International Conference on VLSI Design.

[15]  Irith Pomeranz,et al.  NEST: a nonenumerative test generation method for path delay faults in combinational circuits , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[16]  S. Tragoudas,et al.  Maximum independent sets on transitive graphs and their applications in testing and CAD , 1997, ICCAD 1997.

[17]  Vishwani D. Agrawal,et al.  An Efficient Path Delay Fault Coverage Estimator , 1994, 31st Design Automation Conference.

[18]  Spyros Tragoudas,et al.  Improved nonenumerative path-delay fault-coverage estimation based on optimal polynomial-time algorithms , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  Spyros Tragoudas,et al.  Color counting and its application to path delay fault coverage , 2001, Proceedings of the IEEE 2001. 2nd International Symposium on Quality Electronic Design.

[20]  Irith Pomeranz,et al.  A method for identifying robust dependent and functionally unsensitizable paths , 1997, Proceedings Tenth International Conference on VLSI Design.

[21]  Janak H. Patel,et al.  Segment delay faults: a new fault model , 1996, Proceedings of 14th VLSI Test Symposium.