Potential for enhanced geothermal systems in low permeability limestones – stimulation strategies for the Western Malm karst (Bavaria)

Abstract Hot water from the Malm limestone formation in the central part of the South German Molasse Basin is utilized by a number of geothermal power plants. However, in the low permeability western part of the basin geothermal systems need to be engineered in order to become commercial prospects. This study investigates the potential productivity increase resulting from hydraulic stimulation treatments for reservoir conditions typically found in the western part of the basin using commercial hydraulic fracturing software which is routinely used in the hydrocarbon industry and in addition an open source reservoir simulator. The focus of this study is to evaluate the possible dimensions of generated tensile fractures for different reservoir and stimulation parameters and to show their potential to increase the productivity of an exemplary well in that region. One single stimulation treatment does not lead to an economic productivity increase. The most promising ways to stimulate the considered low permeability well sufficiently for geothermal power production are (1) to connect the well to a higher permeable damage zone around a major fault and (2) to perform multiple stimulation treatments. Water circulation through a second well (injection well) additionally increases the productivity of the production well. Under favorable conditions less than 10 parallel hydraulic fractures need to be developed.

[1]  I. Sass,et al.  Outcrop analogue studies for reservoir characterization and prediction of deep geothermal systems in the Molasse Basin, Germany , 2011 .

[2]  Christoph Clauser,et al.  Erstellung statistisch abgesicherter thermischer und hydraulischer Gesteinseigenschaften für den flachen und tiefen Untergrund in Deutschland : Phase 1 - Westliche Molasse und nördlich angrenzendes Süddeutsches Schichtstufenland ; Endbericht 01.01.2005 - 31.10.2006 , 2007 .

[3]  George E. King,et al.  Acidizing Concepts - Matrix vs. Fracture Acidizing , 1986 .

[4]  Siegfried Siegesmund,et al.  Limestones in Germany used as building stones: an overview , 2010 .

[5]  M. P. Cleary,et al.  A Complete Integrated Model for Design and Real-Time Analysis of Hydraulic Fracturing Operations , 1986 .

[6]  Silvie Pujiastuti,et al.  Proppant Hydraulic Fracturing in Low Permeability and Low Acid-Soluble Carbonate Reservoir: A Case History , 2010 .

[7]  Mirajuddin R. Khan,et al.  Acid Fracturing or Proppant Fracturing in Carbonate Formation? A Rock Mechanics View , 2006 .

[8]  R. Arnett,et al.  Modelling fluid flow in fractured‐porous rock masses by finite‐element techniques , 1984 .

[9]  Toshihiko Shimamoto,et al.  Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks , 2009 .

[10]  Olaf Kolditz,et al.  Modelling of fractured carbonate reservoirs: outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany , 2013, Environmental Earth Sciences.

[11]  Mansoor Zoveidavianpoor,et al.  The needs for hydraulic fracturing in Iranian carbonate oilfields: acid or propped fracture? , 2011 .

[12]  Mechanically Induced Fracture-Face Skin--Insights From Laboratory Testing and Modeling Approaches , 2013 .

[13]  G. Blöcher,et al.  Impact of single inclined faults on the fluid flow and heat transport: results from 3-D finite element simulations , 2013, Environmental Earth Sciences.

[14]  Ernst Huenges,et al.  Enhancing Geothermal Reservoirs , 2010 .

[15]  Mansoor Zoveidavianpoor,et al.  Development of a fuzzy system model for candidate-well selection for hydraulic fracturing in a carbonate reservoir , 2012 .

[16]  Günter Zimmermann,et al.  Rock specific hydraulic fracturing and matrix acidizing to enhance a geothermal system — Concepts and field results , 2011 .

[17]  Brice Lecampion,et al.  Measuring Hydraulic Fracture Growth in Naturally Fractured Rock , 2009 .

[18]  R. Schulz,et al.  Effectiveness of acidizing geothermal wells in the South German Molasse Basin , 2013 .

[19]  M. P. Cleary Discussion of comparison study of hydraulic fracturing models -- Test case: GRI Staged Field Experiment No. 3 , 1994 .

[20]  M. Gysel,et al.  Anhydrite Dissolution Phenomena: Three Case Histories of Anhydrite Karst Caused by Water Tunnel Operation , 2002 .

[21]  Michael B. Smith,et al.  Hydraulic Fracturing: History of an Enduring Technology , 2010 .

[22]  Finn Ouchterlony,et al.  Suggested methods for determining the fracture toughness of rock , 1988 .

[23]  Ignacio Carol,et al.  On zero‐thickness interface elements for diffusion problems , 2004 .

[24]  A. Aydin,et al.  Physical properties of carbonate fault rocks, fucino basin (Central Italy): implications for fault seal in platform carbonates , 2007 .

[25]  R. Walter Geologie von Mitteleuropa , 2007 .

[26]  Wenqing Wang,et al.  OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media , 2012, Environmental Earth Sciences.

[27]  C. Fredd,et al.  Experimental Study of Hydraulic Fracture Conductivity Demonstrates the Benefits of Using Proppants , 2000 .

[28]  Reinhard Jung,et al.  Geothermal Energy Use in Germany , 2007 .

[29]  Olaf Kolditz,et al.  Object‐oriented finite element analysis of thermo‐hydro‐mechanical (THM) problems in porous media , 2007 .

[30]  D. A. Mendelsohn,et al.  A Review of Hydraulic Fracture Modeling—II: 3D Modeling and Vertical Growth in Layered Rock , 1984 .

[31]  Ching H. Yew,et al.  Mechanics of Hydraulic Fracturing , 1997 .

[32]  Leonard J. Kalfayan,et al.  Fracture Acidizing: History, Present State, and Future , 2007 .

[33]  Norman R. Warpinski,et al.  Comparison study of hydraulic fracturing models -- Test case: GRI Staged Field Experiment No. 3 , 1994 .

[34]  M. P. Cleary,et al.  Critical Issues in Hydraulic Fracturing of High-Permeability Reservoirs , 1994 .

[35]  Andreas Barth,et al.  The World Stress Map database release 2008, 1:46 , 2008 .

[36]  Paul A. Witherspoon,et al.  Theoretical and field studies of coupled hydromechanical behaviour of fractured rocks—1. Development and verification of a numerical simulator , 1992 .

[37]  N. Al-Shayea Comparing Reservoir and Outcrop Specimens for Mixed Mode I–II Fracture Toughness of a Limestone Rock Formation at Various Conditions , 2002 .

[38]  Michael J. Mayerhofer,et al.  The Relationship Between Fracture Complexity, Reservoir Properties, and Fracture-Treatment Design , 2010 .

[39]  Michael Vincent Restimulation of Unconventional Reservoirs: When Are Refracs Beneficial? , 2011 .

[40]  D. Lockner,et al.  Hydraulic fracturing in granite under geothermal conditions , 1980 .

[41]  M. P. Cleary,et al.  Development of a Fully Three-Dimensional Simulator for Analysis and Design of Hydraulic Fracturing , 1983 .

[42]  Fiona Cobb,et al.  Structural Engineer's Pocket Book , 2004 .

[43]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 , 2007 .