SummaryThe central problem of this paper is the question of denseness of those
planar point sets <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>\mathcal{P}$, not a subset of a line, which have the
property that for every three noncollinear points in $\mathcal{P}$, a specific
triangle center (incenter (IC), circumcenter (CC), orthocenter (OC) resp.) is
also in the set $\mathcal{P}$. The IC and CC versions were settled before.
First we generalize and solve the CC problem in higher dimensions. Then we
solve the OC problem in the plane essentially proving that $\mathcal{P}$ is
either a dense point set of the plane or it is a subset of a rectangular
hyperbola. In the latter case it is either a dense subset or it is a special
discrete subset of a rectangular hyperbola.
[1]
Helge Tverberg,et al.
Proof of grünbaum's conjecture on common transversals for translates
,
1989,
Discret. Comput. Geom..
[2]
Brianchon,et al.
Géométrie des courbes. Recherches sur la détermination d'une hyperbole équilatère, au moyen de quatre conditions données
,
1821
.
[3]
Dan Ismailescu,et al.
A dense planar point set from iterated line intersections
,
2004,
Comput. Geom..
[4]
Xavier Goaoc,et al.
Helly-Type Theorems for Line Transversals to Disjoint Unit Balls
,
2008,
Discret. Comput. Geom..
[5]
B. Grünbaum.
Common Transversals for Families of Sets
,
1960
.
[6]
Jirí Matousek,et al.
No Helly Theorem for Stabbing Translates by Lines in R3
,
2004,
Discret. Comput. Geom..
[7]
David Antin,et al.
100 Great Problems of Elementary Mathematics
,
1965
.
[8]
B. Grünbaum,et al.
On common transversals
,
1958
.
[9]
L. Danzer.
Über ein Problem aus der kombinatorischen Geometrie
,
1957
.
[10]
Ted G. Lewis,et al.
A Helly-Type Theorem for Line Transversals to Disjoint Unit Balls
,
2003,
Discret. Comput. Geom..