Hypercomputation by definition

Hypercomputation refers to computation surpassing the Turing model, not just exceeding the von Neumann architecture. Algebraic constructions yield a finitely based pseudorecursive equational theory (Internat. J. Algebra Comput. 6 (1996) 457-510). It is not recursive, although for each given number n, its equations in n variables form a recursive set. Hypercomputation is therefore required for an algorithmic answer to the membership problem of such a theory. Yet Alfred Tarski declared these theories to be decidable. The dilemma of a decidable but not recursive set presents an impasse to standard computability theory. One way to break the impasse is to predicate that the theory is computable--in other words, hypercomputation by definition.

[1]  M. Hogarth Non-Turing Computers and Non-Turing Computability , 1994, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[2]  James R. Geiser A Formalization of Essenin-Volpin's Proof Theoretical Studies by Means of Nonstandard Analysis , 1974, J. Symb. Log..

[3]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[4]  I. Stark,et al.  Domains and Denotational Semantics History Accomplishments and Open Problems , 1996 .

[5]  Carol E. Cleland Recipes, Algorithms, and Programs , 2004, Minds and Machines.

[6]  James H. Davenport,et al.  On the Integration of Algebraic Functions , 1979, Lecture Notes in Computer Science.

[7]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[8]  Joel Moses,et al.  Symbolic integration the stormy decade , 1971, SYMSAC '71.

[9]  Alfred Tarski,et al.  Logic, Semantics, Metamathematics: Papers from 1923 to 1938 , 1958 .

[10]  Benjamin Wells Pseudorecursive Varieties of Semigroups - I , 1996, Int. J. Algebra Comput..

[11]  Carol E. Cleland Effective procedures and computable functions , 2004, Minds and Machines.

[12]  Oliver S. Kerr The Lorenz Attractor , 2003 .

[13]  A. S. Yessenin-Volpin,et al.  The Ultra-Intuitionistic Criticism and the Antitraditional Program for Foundations of Mathematics , 1970 .

[14]  H. James Hoover,et al.  Limits to Parallel Computation: P-Completeness Theory , 1995 .

[15]  Richard A. Shore,et al.  Defining the Turing Jump , 1999 .

[16]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[17]  B. J. Copeland,et al.  Alan Turing’s Forgotten Ideas in Computer Science , 1999 .

[18]  Joel Moses,et al.  Symbolic integration: the stormy decade , 1966, CACM.

[19]  John L. Casti,et al.  Unconventional Models of Computation , 2002, Lecture Notes in Computer Science.

[20]  Joel David Hamkins,et al.  Infinite Time Turing Machines , 2000 .

[21]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[22]  Lloyd Allison,et al.  A Practical Introduction to Denotational Semantics , 1987 .

[23]  Sergei N. Artëmov Explicit provability and constructive semantics , 2001, Bull. Symb. Log..

[24]  Cristian S. Calude,et al.  Unconventional Models of Computation, UMC’2K , 2001, Discrete Mathematics and Theoretical Computer Science.

[25]  H. Putnam,et al.  The Decision Problem for Exponential Diophantine Equations , 1961 .

[26]  J. Barwise,et al.  The Liar: An Essay on Truth and Circularity , 1987 .

[27]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[28]  Tien D. Kieu,et al.  Numerical simulations of a quantum algorithm for Hilbert's tenth problem , 2003, SPIE Defense + Commercial Sensing.

[29]  Benjamin Wells,et al.  Is There a Nonrecursive Decidable Equational Theory? , 2002, Minds and Machines.

[30]  David Isles What Evidence is There that 265536 is a Natural Number? , 1992, Notre Dame J. Formal Log..

[31]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[32]  T. Roman,et al.  Limits To Parallel Computation: P-Completeness Theory [Book Review] , 1999, IEEE Concurrency.

[33]  Carl G. Jockusch Shore Richard A. and Slaman Theodore A.. Defining the Turing jump. Mathematical research letters , vol. 6 (1999), pp. 711–722. , 2001 .

[34]  Benjamin Wells,et al.  Applying, extending, and specializing pseudorecursiveness , 2004, Ann. Pure Appl. Log..

[35]  W. Tucker The Lorenz attractor exists , 1999 .

[36]  R. Risch The problem of integration in finite terms , 1969 .

[37]  István Németi,et al.  Non-Turing Computations Via Malament–Hogarth Space-Times , 2001 .

[38]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[39]  M. Randall Holmes,et al.  Strong axioms of infinity in NFU , 2001, Journal of Symbolic Logic.