Unambiguous identification of miRNA:target site interactions by different types of ligation reactions.

To exert regulatory function, miRNAs guide Argonaute (AGO) proteins to partially complementary sites on target RNAs. Crosslinking and immunoprecipitation (CLIP) assays are state-of-the-art to map AGO binding sites, but assigning the targeting miRNA to these sites relies on bioinformatics predictions and is therefore indirect. To directly and unambiguously identify miRNA:target site interactions, we modified our CLIP methodology in C. elegans to experimentally ligate miRNAs to their target sites. Unexpectedly, ligation reactions also occurred in the absence of the exogenous ligase. Our in vivo data set and reanalysis of published mammalian AGO-CLIP data for miRNA-chimeras yielded ∼17,000 miRNA:target site interactions. Analysis of interactions and extensive experimental validation of chimera-discovered targets of viral miRNAs suggest that our strategy identifies canonical, noncanonical, and nonconserved miRNA:targets. About 80% of miRNA interactions have perfect or partial seed complementarity. In summary, analysis of miRNA:target chimeras enables the systematic, context-specific, in vivo discovery of miRNA binding.

[1]  Ralf Zimmer,et al.  PARma: identification of microRNA target sites in AGO-PAR-CLIP data , 2013, Genome Biology.

[2]  Gene W. Yeo,et al.  Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans , 2010, Nature Structural &Molecular Biology.

[3]  Dominic Grün,et al.  In vivo and transcriptome-wide identification of RNA binding protein target sites. , 2011, Molecular cell.

[4]  Eun-Young Choi,et al.  The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. , 2004, Genes & development.

[5]  M. Zavolan,et al.  A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets , 2013, Nature Methods.

[6]  C. Stocking,et al.  A microRNA Encoded by Kaposi Sarcoma-Associated Herpesvirus Promotes B-Cell Expansion In Vivo , 2012, PloS one.

[7]  C. Sander,et al.  Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. , 2011, Genes & development.

[8]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[9]  S. Chi,et al.  An alternative mode of microRNA target recognition , 2012, Nature Structural &Molecular Biology.

[10]  M. Kay,et al.  The biological basis for microRNA target restriction to the 3' untranslated region in mammalian mRNAs , 2009, Nature Structural &Molecular Biology.

[11]  D. Söll,et al.  HSPC117 Is the Essential Subunit of a Human tRNA Splicing Ligase Complex , 2011, Science.

[12]  Chi-Ying F. Huang,et al.  miRTarBase: a database curates experimentally validated microRNA–target interactions , 2010, Nucleic Acids Res..

[13]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[14]  D. Bartel,et al.  Weak Seed-Pairing Stability and High Target-Site Abundance Decrease the Proficiency of lsy-6 and Other miRNAs , 2011, Nature Structural &Molecular Biology.

[15]  W. Filipowicz,et al.  RNA 3'-terminal phosphate cyclase activity and RNA ligation in HeLa cell extract. , 1983, Nucleic acids research.

[16]  C. Sander,et al.  Identification of microRNAs of the herpesvirus family , 2005, Nature Methods.

[17]  Adam Grundhoff,et al.  A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. , 2006, RNA.

[18]  A. Raja,et al.  Kaposi's Sarcoma-Associated Herpesvirus Encodes a Mimic of Cellular miR-23 , 2013, Journal of Virology.

[19]  Oliver Hofmann,et al.  miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. , 2009, Molecular cell.

[20]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[21]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[22]  N. Rajewsky,et al.  Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. , 2011, Molecular cell.

[23]  J. Abbott,et al.  A KSHV encoded ortholog of miR-155 induces human splenic B-cell expansion in NOD/LtSz-scid IL2R{gamma}null mice , 2011 .

[24]  Anton J. Enright,et al.  Identification of Virus-Encoded MicroRNAs , 2004, Science.

[25]  M. Samols,et al.  Cloning and Identification of a MicroRNA Cluster within the Latency-Associated Region of Kaposi's Sarcoma-Associated Herpesvirus , 2005, Journal of Virology.

[26]  C. Fabián Flores-Jasso,et al.  Argonaute Divides Its RNA Guide into Domains with Distinct Functions and RNA-Binding Properties , 2012, Cell.

[27]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[28]  Nikolaus Rajewsky,et al.  The Impact of miRNA Target Sites in Coding Sequences and in 3′UTRs , 2011, PloS one.

[29]  Bryan R. Cullen,et al.  Virally Induced Cellular MicroRNA miR-155 Plays a Key Role in B-Cell Immortalization by Epstein-Barr Virus , 2010, Journal of Virology.

[30]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[31]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[32]  Alberto Riva,et al.  Kaposi's Sarcoma-Associated Herpesvirus Encodes an Ortholog of miR-155 , 2007, Journal of Virology.

[33]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[34]  Uwe Ohler,et al.  Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. , 2011, Cell host & microbe.

[35]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[36]  Oliver Hobert,et al.  Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions , 2006, Nature Structural &Molecular Biology.

[37]  E. Gottwein Kaposi’s Sarcoma-Associated Herpesvirus microRNAs , 2012, Front. Microbio..

[38]  Henning Urlaub,et al.  Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi , 2002, Cell.

[39]  Rodney P Kincaid,et al.  Virus-Encoded microRNAs: An Overview and a Look to the Future , 2012, PLoS pathogens.

[40]  Bryan R. Cullen,et al.  A viral microRNA functions as an orthologue of cellular miR-155 , 2007, Nature.

[41]  D. Barford,et al.  Enhancement of the Seed-Target Recognition Step in RNA Silencing by a PIWI/MID Domain Protein , 2009, Molecular cell.

[42]  Ligang Wu,et al.  Micro-RNA Regulation of the Mammalian lin-28 Gene during Neuronal Differentiation of Embryonal Carcinoma Cells , 2005, Molecular and Cellular Biology.

[43]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[44]  G. Hannon,et al.  The Structure of Human Argonaute-2 in Complex with miR-20a , 2012, Cell.

[45]  Venugopal Nair,et al.  Critical Role of the Virus-Encoded MicroRNA-155 Ortholog in the Induction of Marek's Disease Lymphomas , 2011, PLoS pathogens.

[46]  W. Filipowicz,et al.  Regulation of mRNA translation and stability by microRNAs. , 2010, Annual review of biochemistry.

[47]  C. Smibert,et al.  microRNA‐independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA‐binding protein , 2013, EMBO reports.

[48]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[49]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[50]  Bryan R. Cullen,et al.  The Viral and Cellular MicroRNA Targetome in Lymphoblastoid Cell Lines , 2012, PLoS pathogens.

[51]  William A. Rennie,et al.  CLIP-based prediction of mammalian microRNA binding sites , 2013, Nucleic acids research.

[52]  Bryan R. Cullen,et al.  MicroRNA Target Site Identification by Integrating Sequence and Binding Information , 2013, Nature Methods.

[53]  M. Zavolan,et al.  A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins , 2011, Nature Methods.

[54]  Jay Shendure,et al.  Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. , 2012, Molecular cell.

[55]  B. Cullen,et al.  Transcriptional Origin of Kaposi's Sarcoma-Associated Herpesvirus MicroRNAs , 2006, Journal of Virology.

[56]  Kyle Kai-How Farh,et al.  Expanding the microRNA targeting code: functional sites with centered pairing. , 2010, Molecular cell.

[57]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[58]  N. Rajewsky microRNA target predictions in animals , 2006, Nature Genetics.

[59]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[60]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[61]  J. Abbott,et al.  A Kaposi's Sarcoma-Associated Herpesvirus-Encoded Ortholog of MicroRNA miR-155 Induces Human Splenic B-Cell Expansion in NOD/LtSz-scid IL2Rγnull Mice , 2011, Journal of Virology.