Global Optimization of Highly Multimodal Problems

[1]  Anthony Man-Cho So,et al.  Theory of semidefinite programming for Sensor Network Localization , 2005, SODA '05.

[2]  John C. Gower,et al.  Euclidean distance matrices , 1986 .

[3]  Douglass J. Wilde,et al.  Foundations of Optimization. , 1967 .

[4]  Massimiliano Vasile,et al.  Design of Earth–Mars transfer trajectories using evolutionary-branching technique☆ , 2003 .

[5]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[6]  William E. Hart Sequential Stopping Rules for Random Optimization Methods with Applications to Multistart Local Search , 1998, SIAM J. Optim..

[7]  Giulia Rossi,et al.  Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems. , 2005, The Journal of chemical physics.

[8]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[9]  Chih-Jen Lin,et al.  The analysis of decomposition methods for support vector machines , 2000, IEEE Trans. Neural Networks Learn. Syst..

[10]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[11]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[12]  Donald E. Knuth,et al.  Structured Programming with go to Statements , 1974, CSUR.

[13]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[14]  P. Cage,et al.  Interplanetary trajectory optimization using a genetic algorithm , 1994 .

[15]  David B. Spencer,et al.  Optimal Spacecraft Rendezvous Using Genetic Algorithms , 2002 .

[16]  C. T. Kelley,et al.  An Implicit Filtering Algorithm for Optimization of Functions with Many Local Minima , 1995, SIAM J. Optim..

[17]  Michael Cupples,et al.  Interplanetary Mission Design Using Differential Evolution , 2007 .

[18]  Jiawang Nie,et al.  Sum of squares method for sensor network localization , 2006, Comput. Optim. Appl..

[19]  Michael de la Maza,et al.  Book review: Genetic Algorithms + Data Structures = Evolution Programs by Zbigniew Michalewicz (Springer-Verlag, 1992) , 1993 .

[20]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[21]  Laurent El Ghaoui,et al.  Convex Optimization Methods for Sensor Node Position Estimation , 2001, INFOCOM.

[22]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[23]  Fabio Schoen,et al.  Dissimilarity measures for population-based global optimization algorithms , 2010, Comput. Optim. Appl..

[24]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[25]  Jan Karel Lenstra,et al.  A local search template , 1998, Comput. Oper. Res..

[26]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[27]  Julian Lee,et al.  Unbiased global optimization of Lennard-Jones clusters for N < or =201 using the conformational space annealing method. , 2003, Physical review letters.

[28]  Wheeler Ruml,et al.  Improved MDS-based localization , 2004, IEEE INFOCOM 2004.

[29]  Bernardetta Addis,et al.  Efficiently packing unequal disks in a circle , 2008, Oper. Res. Lett..

[30]  John Mark Bishop,et al.  Advanced global optimisation for mission analysis and design , 2004 .

[31]  G. Rauwolf,et al.  Near-optimal low-thrust orbit transfers generated by a genetic algorithm , 1996 .

[32]  Wayne J. Pullan,et al.  An unbiased population‐based search for the geometry optimization of Lennard–Jones clusters: 2 ≤ N ≤ 372 , 2005, J. Comput. Chem..

[33]  Massimiliano Vasile A global approach to optimal space trajectory design , 2003 .

[34]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[35]  Alexander H. G. Rinnooy Kan,et al.  Bayesian stopping rules for multistart global optimization methods , 1987, Math. Program..

[36]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[37]  Andrei Alexandrescu,et al.  Modern C++ design: generic programming and design patterns applied , 2001 .

[38]  P. Tseng,et al.  On the convergence of the coordinate descent method for convex differentiable minimization , 1992 .

[39]  Bernardetta Addis,et al.  New results for molecular formation under pairwise potential minimization , 2007, Comput. Optim. Appl..

[40]  Lars Meyer,et al.  Mapping the magic numbers in binary Lennard-Jones clusters. , 2005, Physical review letters.

[41]  Luigi Grippo,et al.  On the convergence of the block nonlinear Gauss-Seidel method under convex constraints , 2000, Oper. Res. Lett..

[42]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[43]  Marco Locatelli,et al.  On the Multilevel Structure of Global Optimization Problems , 2005, Comput. Optim. Appl..

[44]  Stephen P. Boyd,et al.  Further Relaxations of the SDP Approach to Sensor Network Localization , 2007 .

[45]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[46]  Remco C. Veltkamp,et al.  Shape matching: similarity measures and algorithms , 2001, Proceedings International Conference on Shape Modeling and Applications.

[47]  M. Piccioni,et al.  Stopping eules for the multistart method when different local minima have different function values , 1990 .

[48]  Brian D. O. Anderson,et al.  Rigidity, computation, and randomization in network localization , 2004, IEEE INFOCOM 2004.

[49]  Camillo Gentile Distributed Sensor Location through Linear Programming with Triangle Inequality Constraints , 2007, IEEE Transactions on Wireless Communications.

[50]  L. El Ghaoui,et al.  Convex position estimation in wireless sensor networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[51]  Bernd Dachwald,et al.  Optimization of interplanetary solar sailcraft trajectories using evolutionary neurocontrol , 2004 .

[52]  Cass T. Miller,et al.  Solution of a Groundwater Control Problem with Implicit Filtering , 2002 .

[53]  Charles R. Johnson,et al.  Connections between the real positive semidefinite and distance matrix completion problems , 1995 .

[54]  D. Mortari,et al.  On the n-Impulse Orbit Transfer using Genetic Algorithms , 2007 .

[55]  A. Murat Tekalp,et al.  Shape similarity matching for query-by-example , 1998, Pattern Recognit..

[56]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[57]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[58]  Jan M. Rabaey,et al.  Robust Positioning Algorithms for Distributed Ad-Hoc Wireless Sensor Networks , 2002, USENIX Annual Technical Conference, General Track.

[59]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[60]  Yinyu Ye,et al.  Semidefinite programming based algorithms for sensor network localization , 2006, TOSN.

[61]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[62]  Monique Laurent,et al.  Matrix Completion Problems , 2009, Encyclopedia of Optimization.

[63]  H. Wolkowicz,et al.  Sensor Network Localization, Euclidean Distance Matrix completions, and graph realization , 2006, MELT '08.

[64]  Yinyu Ye,et al.  Semidefinite programming for ad hoc wireless sensor network localization , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[65]  Fabio Schoen,et al.  Global Optimization of Morse Clusters by Potential Energy Transformations , 2004, INFORMS J. Comput..

[66]  Massimiliano Vasile,et al.  On testing global optimization algorithms for space trajectory design , 2008 .

[67]  M. Laurent A connection between positive semidefinite and euclidean distance matrix completion problems , 1998 .

[68]  Paul Tseng,et al.  Second-Order Cone Programming Relaxation of Sensor Network Localization , 2007, SIAM J. Optim..

[69]  Dario Izzo,et al.  1st ACT global trajectory optimisation competition: Problem description and summary of the results , 2007 .

[70]  Slawomir J. Nasuto,et al.  Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories , 2007, J. Glob. Optim..

[71]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[72]  Kim-Chuan Toh,et al.  Semidefinite Programming Approaches for Sensor Network Localization With Noisy Distance Measurements , 2006, IEEE Transactions on Automation Science and Engineering.

[73]  Chih-Jen Lin,et al.  On the convergence of the decomposition method for support vector machines , 2001, IEEE Trans. Neural Networks.

[74]  Tamás Vinkó,et al.  Benchmarking different global optimisation techniques for preliminary space trajectory design , 2007 .

[75]  Y. Ye,et al.  A Gradient Search Method to Round the Semideflnite Programming Relaxation Solution for Ad Hoc Wireless Sensor Network Localization , 2004 .

[76]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .

[77]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[78]  A. Alfakih Graph rigidity via Euclidean distance matrices , 2000 .

[79]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..

[80]  C. T. Kelley,et al.  Superlinear Convergence and Implicit Filtering , 1999, SIAM J. Optim..

[81]  Fabio Schoen,et al.  Efficient Algorithms for Large Scale Global Optimization: Lennard-Jones Clusters , 2003, Comput. Optim. Appl..

[82]  Massimiliano Vasile,et al.  A hybrid multiagent approach for global trajectory optimization , 2009, J. Glob. Optim..

[83]  Neal Patwari,et al.  Distributed Multidimensional Scaling with Adaptive Weighting for Node Localization in Sensor Networks , 2004 .

[84]  Herb Sutter,et al.  C++ coding standards , 2004 .

[85]  Bernardetta Addis,et al.  Disk Packing in a Square: A New Global Optimization Approach , 2008, INFORMS J. Comput..

[86]  Fabio Schoen,et al.  Optimal and sub-optimal stopping rules for the Multistart algorithm in global optimization , 1992, Math. Program..

[87]  Scott Meyers,et al.  Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition) , 1991 .

[88]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[89]  Robert H. Leary,et al.  Global Optimization on Funneling Landscapes , 2000, J. Glob. Optim..

[90]  Bernd Hartke,et al.  Global cluster geometry optimization by a phenotype algorithm with Niches: Location of elusive minima, and low‐order scaling with cluster size , 1999 .

[91]  Michael A. Saunders,et al.  SpaseLoc: An Adaptive Subproblem Algorithm for Scalable Wireless Sensor Network Localization , 2006, SIAM J. Optim..

[92]  Sheldon M. Ross,et al.  Introduction to Probability and Statistics for Engineers and Scientists , 1987 .

[93]  Stephen P. Boyd,et al.  Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.

[94]  J. J. Moré,et al.  ISSUES IN LARGE-SCALE GLOBAL MOLECULAR OPTIMIZATION , 1997 .

[95]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[96]  Jorge J. Moré,et al.  Global Continuation for Distance Geometry Problems , 1995, SIAM J. Optim..

[97]  J. J. Moré,et al.  Smoothing techniques for macromolecular global optimization , 1995 .

[98]  Arnold N. Tharrington,et al.  Global optimization and finite temperature simulations of atomic clusters: Use of XenArm clusters as test systems , 2002 .

[99]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[100]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..