Analysis of multiexponential functions without a hypothesis as to the number of components
暂无分享,去创建一个
[1] W. Wayne Meinke,et al. Method for the Analysis of Multicomponent Exponential Decay Curves , 1959 .
[2] Leonard Weiss,et al. Prony’s Method, Z-Transforms, and Padé Approximation , 1963 .
[3] R. Bellman,et al. A NUMERICAL INVERSION OF THE LAPLACE TRANSFORM , 1963 .
[4] A. Stroud,et al. Gaussian quadrature formulas , 1966 .
[5] R. Bellman,et al. Numerical Inversion of the Laplace Transform: Applications to Biology, Economics Engineering, and Physics , 1967 .
[6] C. Tranter,et al. Integral Transforms in Mathematical Physics , 1971 .
[7] I. M. Longman. Computation of the padé table , 1972 .
[8] G. A. Baker. The existence and convergence of subsequences of Padé approximants , 1973 .
[9] S. Provencher,et al. An eigenfunction expansion method for the analysis of exponential decay curves , 1976 .
[10] M. R. Smith,et al. Decomposition of Multicomponent Exponential Decays by Spectral Analytic Techniques , 1976 .
[11] M. Fixman,et al. Theory of DNA melting curves , 1977, Biopolymers.
[12] Jacek Gilewicz,et al. Approximants de Padé , 1978 .
[13] H. Stöckmann. A new method to analyse composite exponential decay curves , 1978 .