Efficiency and ambiguity in an adaptive neural code

We examine the dynamics of a neural code in the context of stimuli whose statistical properties are themselves evolving dynamically. Adaptation to these statistics occurs over a wide range of timescales—from tens of milliseconds to minutes. Rapid components of adaptation serve to optimize the information that action potentials carry about rapid stimulus variations within the local statistical ensemble, while changes in the rate and statistics of action-potential firing encode information about the ensemble itself, thus resolving potential ambiguities. The speed with which information is optimized and ambiguities are resolved approaches the physical limit imposed by statistical sampling and noise.

[1]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[2]  G. P. Moore,et al.  SENSITIVITY OF NEURONES IN APLYSIA TO TEMPORAL PATTERN OF ARRIVING IMPULSES. , 1963, The Journal of experimental biology.

[3]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[4]  T. H. Bullock,et al.  Neutral coding - A report based on an NRP work session , 1968 .

[5]  J. Thorson,et al.  Distributed Relaxation Processes in Sensory Adaptation , 1974, Science.

[6]  R. Shapley,et al.  The contrast gain control of the cat retina , 1979, Vision Research.

[7]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[8]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[9]  R. Shapley,et al.  Photoreception and Vision in Invertebrates , 1984, NATO ASI Series.

[10]  William Bialek,et al.  Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[11]  R. Hardie,et al.  Facets of Vision , 1989, Springer Berlin Heidelberg.

[12]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[13]  Alexa Riehle,et al.  Directionally Selective Motion Detection by Insect Neurons , 1989 .

[14]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[15]  A. Das Path Integrals and Quantum Mechanics , 1993 .

[16]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[17]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[18]  J J Hopfield,et al.  Transforming neural computations and representing time. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Laughlin,et al.  The rate of information transfer at graded-potential synapses , 1996, Nature.

[20]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[21]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[22]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[23]  A V Herz,et al.  Neural codes: firing rates and beyond. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Miller,et al.  Effects of adaptation on neural coding by primary sensory interneurons in the cricket cercal system. , 1997, Journal of neurophysiology.

[25]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  H. Markram,et al.  Information Processing with Frequency-Dependent Synaptic Connections , 1998, Neurobiology of Learning and Memory.

[27]  Anthony M. Zador,et al.  Asymmetric Dynamics in Optimal Variance Adaptation , 1998, Neural Computation.

[28]  Shimon Marom,et al.  Interaction between Duration of Activity and Time Course of Recovery from Slow Inactivation in Mammalian Brain Na+Channels , 1998, The Journal of Neuroscience.

[29]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[30]  Martin J. Wainwright,et al.  Visual adaptation as optimal information transmission , 1999, Vision Research.

[31]  Hateren,et al.  Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics , 1999, The Journal of experimental biology.

[32]  Israel Nelken,et al.  Responses of auditory-cortex neurons to structural features of natural sounds , 1999, Nature.

[33]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[34]  R. Reid,et al.  Temporal Coding of Visual Information in the Thalamus , 2000, The Journal of Neuroscience.

[35]  Y Wang,et al.  Information coding via spontaneous oscillations in neural ensembles. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  R. Masland,et al.  Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells , 2001, Nature Neuroscience.

[37]  Kerry J. Kim,et al.  Temporal Contrast Adaptation in the Input and Output Signals of Salamander Retinal Ganglion Cells , 2001, The Journal of Neuroscience.