Applications of nanomaterials in mass spectrometry analysis.

Mass spectrometry (MS) based analyses have received intense research interest in a series of rapidly developing disciplines. Although current MS techniques have enjoyed great successes, several key challenges still remain in practical applications, especially for the detection of biomolecules in biological systems. The use of nanomaterials in MS based analysis provides a promising approach due to their unique physical and chemical properties. In this review, nanomaterials with different compositions and nanostructures employed in MS applications are summarised and classified by their functions. Such an integrated and wide reaching review will provide a comprehensive handbook to researchers with various backgrounds working in this exciting interdisciplinary area.

[1]  X. Zhang,et al.  Synthesis of highly water-dispersible polydopamine-modified multiwalled carbon nanotubes for matrix-assisted laser desorption/ionization mass spectrometry analysis. , 2013, ACS applied materials & interfaces.

[2]  Chengzhong Yu,et al.  Pore size-optimized periodic mesoporous organosilicas for the enrichment of peptides and polymers , 2013 .

[3]  Haojie Lu,et al.  Mechanism exploration of adsorption-immobilized enzymatic reactor using polymer-coated silica microbeads. , 2013, Talanta.

[4]  Livia S. Eberlin,et al.  Mass spectrometry imaging under ambient conditions. , 2013, Mass spectrometry reviews.

[5]  Dong-Hwang Chen,et al.  Direct binding of Concanvalin A onto iron oxide nanoparticles for fast magnetic selective separation of lactoferrin , 2013 .

[6]  Yan-Lin Liu,et al.  Magnetic affinity microspheres with meso-/macroporous shells for selective enrichment and fast separation of phosphorylated biomolecules. , 2013, ACS applied materials & interfaces.

[7]  J. Zou,et al.  Laser Engineered Graphene Paper for Mass Spectrometry Imaging , 2013, Scientific Reports.

[8]  Haojie Lu,et al.  Boronic acid-functionalized detonation nanodiamond for specific enrichment of glycopeptides in glycoproteome analysis. , 2013, The Analyst.

[9]  H. Yamaguchi,et al.  Enzyme‐immobilized reactors for rapid and efficient sample preparation in MS‐based proteomic studies , 2013, Proteomics.

[10]  Yunchun Liu,et al.  Fine-tuning the specificity of boronate affinity monoliths toward glycoproteins through pH manipulation. , 2013, The Analyst.

[11]  W. Tseng,et al.  Human serum albumin-coated gold nanoparticles for selective extraction of lysozyme from real-world samples prior to capillary electrophoresis. , 2012, Journal of chromatography. A.

[12]  C. Huck,et al.  Silica-lanthanum oxide: pioneer composite of rare-Earth metal oxide in selective phosphopeptides enrichment. , 2012, Analytical chemistry.

[13]  H. Zou,et al.  Highly efficient extraction of cellular nucleic acid associated proteins in vitro with magnetic oxidized carbon nanotubes. , 2012, Analytical chemistry.

[14]  L. Zhong,et al.  Synthesis and characterization of a novel boronic acid-functionalized chitosan polymeric nanosphere for highly specific enrichment of glycopeptides. , 2012, Carbohydrate polymers.

[15]  R. Arakawa,et al.  Platinum vapor deposition surface-assisted laser desorption/ionization for imaging mass spectrometry of small molecules. , 2012, Rapid communications in mass spectrometry : RCM.

[16]  Jan Ma,et al.  Development of Nanomaterials for SALDI‐MS Analysis in Forensics , 2012, Advanced materials.

[17]  Fei Wang,et al.  Hydrophilic modification of silica-titania mesoporous materials as restricted-access matrix adsorbents for enrichment of phosphopeptides. , 2012, Journal of chromatography. A.

[18]  L. Zhang,et al.  Mesoporous TiO2 aerogel for selective enrichment of phosphopeptides in rat liver mitochondria. , 2012, Analytica chimica acta.

[19]  Wei Gao,et al.  Highly selective capture of phosphopeptides using a nano titanium dioxide-multiwalled carbon nanotube nanocomposite. , 2012, Analytical biochemistry.

[20]  X. Le,et al.  Mesoporous materials in peptidome analysis. , 2012, Angewandte Chemie.

[21]  Liang Zhao,et al.  Recent advances of mesoporous materials in sample preparation. , 2012, Journal of chromatography. A.

[22]  Chengzhong Yu,et al.  Enrichment and detection of peptides from biological systems using designed periodic mesoporous organosilica microspheres. , 2012, Small.

[23]  Bifeng Yuan,et al.  Zirconium arsenate-modified magnetic nanoparticles: preparation, characterization and application to the enrichment of phosphopeptides. , 2012, The Analyst.

[24]  Wen-Yih Chen,et al.  Rapid analysis of abused drugs using nanostructured silicon surface assisted laser desorption/ionization mass spectrometry. , 2012, The Analyst.

[25]  Tao Zhang,et al.  Highly efficient extraction of serum peptides by ordered mesoporous carbon. , 2011, Angewandte Chemie.

[26]  X. Zhang,et al.  Preparation of magnetic core‐mesoporous shell microspheres with C8‐modified interior pore‐walls and their application in selective enrichment and analysis of mouse brain peptidome , 2011, Proteomics.

[27]  R. Vitorino,et al.  Synthesis and optimization of lectin functionalized nanoprobes for the selective recovery of glycoproteins from human body fluids. , 2011, Analytical chemistry.

[28]  H. Zou,et al.  Efficient enrichment and identification of phosphopeptides by cerium oxide using on-plate matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. , 2011, Rapid communications in mass spectrometry : RCM.

[29]  Maxim G Ryadnov,et al.  Nano-enabled biomarker discovery and detection. , 2011, Biomarkers in medicine.

[30]  Y. Jeong,et al.  Synergistic effect of graphene oxide/MWCNT films in laser desorption/ionization mass spectrometry of small molecules and tissue imaging. , 2011, ACS nano.

[31]  D. Zhao,et al.  Hierarchically Ordered Macro-/Mesoporous Silica Monolith: Tuning Macropore Entrance Size for Size-Selective Adsorption of Proteins , 2011 .

[32]  X. Zhang,et al.  Development of oleic acid‐functionalized magnetite nanoparticles as hydrophobic probes for concentrating peptides with MALDI‐TOF‐MS analysis , 2011, Proteomics.

[33]  Cheng-Kang Chiang,et al.  Nanoparticle-based mass spectrometry for the analysis of biomolecules. , 2011, Chemical Society reviews.

[34]  C. Tsao,et al.  Fabrication of nanostructured silicon by metal-assisted etching and its effects on matrix-free laser desorption/ionization mass spectrometry. , 2011, Analytica chimica acta.

[35]  I. Lazar,et al.  Recent advances in the MS analysis of glycoproteins: Theoretical considerations , 2011, Electrophoresis.

[36]  H. Girault,et al.  Nanomaterial-assisted laser desorption ionization for mass spectrometry-based biomedical analysis. , 2010, Nanomedicine.

[37]  R. Arakawa,et al.  Functionalized Nanoparticles and Nanostructured Surfaces for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry , 2010, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[38]  H. Zou,et al.  Size-selective proteolysis on mesoporous silica-based trypsin nanoreactor for low-MW proteome analysis. , 2010, Chemical communications.

[39]  C. A. Nelson,et al.  Effective enrichment and mass spectrometry analysis of phosphopeptides using mesoporous metal oxide nanomaterials. , 2010, Analytical chemistry.

[40]  Xinmiao Liang,et al.  Selective enrichment of glycopeptides/phosphopeptides using porous titania microspheres. , 2010, Chemical communications.

[41]  Zong-Hong Lin,et al.  Nanomaterial-based surface-assisted laser desorption/ionization mass spectrometry of peptides and proteins , 2010, Journal of the American Society for Mass Spectrometry.

[42]  B. Fabry,et al.  Size-selective separation of macromolecules by nanochannel titania membrane with self-cleaning (declogging) ability. , 2010, Journal of the American Chemical Society.

[43]  G. S. Walker,et al.  Surface-assisted laser desorption ionisation time-of-flight mass spectrometry with an activated carbon surface for the rapid detection of underivatised steroids , 2010 .

[44]  C. Deng,et al.  Concanavalin A‐immobilized magnetic nanoparticles for selective enrichment of glycoproteins and application to glycoproteomics in hepatocelluar carcinoma cell line , 2010, Proteomics.

[45]  Pengyuan Yang,et al.  Functionalized periodic mesoporous organosilicas for enhanced and selective peptide enrichment. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[46]  Y. Coffinier,et al.  Matrix-free laser desorption/ionization mass spectrometry on silicon nanowire arrays prepared by chemical etching of crystalline silicon. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[47]  Pengyuan Yang,et al.  A smart glycol-directed nanodevice from rationally designed macroporous materials. , 2010, Chemistry.

[48]  C. Deng,et al.  Synthesis of Fe(3)O(4)@SiO(2)@PMMA core-shell-shell magnetic microspheres for highly efficient enrichment of peptides and proteins for MALDI-ToF MS analysis. , 2010, Angewandte Chemie.

[49]  S. Mohammed,et al.  Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. , 2010, Analytical chemistry.

[50]  R. Arakawa,et al.  Functionalized pyrolytic highly oriented graphite polymer film for surface-assisted laser desorption/ionization mass spectrometry in environmental analysis. , 2009, Rapid communications in mass spectrometry : RCM.

[51]  H. Girault,et al.  A phospho-directed macroporous alumina-silica nanoreactor with multi-functions. , 2009, ACS nano.

[52]  S. Goodison,et al.  Enrichment of glycoproteins using nanoscale chelating concanavalin A monolithic capillary chromatography. , 2009, Analytical chemistry.

[53]  D. Gjerde,et al.  Enrichment of Amadori products derived from the nonenzymatic glycation of proteins using microscale boronate affinity chromatography. , 2009, Analytical biochemistry.

[54]  Yuqi Feng,et al.  Boronate affinity monolith for highly selective enrichment of glycopeptides and glycoproteins. , 2009, The Analyst.

[55]  K. Sakata,et al.  Laser Desorption Ionization Mass Spectrometry by Using Surface Plasmon Excitation on Gold Nanoparticle , 2009 .

[56]  H. Girault,et al.  Kinetics of proteolytic reactions in nanoporous materials. , 2009, Journal of proteome research.

[57]  L. Márk,et al.  Analysis of nonderivatized steroids by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using C70 fullerene as matrix , 2009, Analytical and bioanalytical chemistry.

[58]  C. Deng,et al.  Magnetically Responsive Fe3O4@C@SnO2 Core−Shell Microspheres: Synthesis, Characterization and Application in Phosphoproteomics , 2009 .

[59]  Liang Qiao,et al.  Macroporous materials as novel catalysts for efficient and controllable proteolysis. , 2009, Analytical chemistry.

[60]  S. Brooks,et al.  Strategies for Analysis of the Glycosylation of Proteins: Current Status and Future Perspectives , 2009, Molecular biotechnology.

[61]  N. Amini,et al.  SALDI-MS Signal enhancement using oxidized graphitized carbon black nanoparticles , 2009, Journal of the American Society for Mass Spectrometry.

[62]  V. Wysocki,et al.  Kinetics of Surface-Induced Dissociation of N(CH3)4+ and N(CD3)4+ Using Silicon Nanoparticle Assisted Laser Desorption/Ionization and Laser Desorption/Ionization , 2009, Journal of the American Society for Mass Spectrometry.

[63]  W. Lu,et al.  Ion desorption efficiency and internal energy transfer in carbon-based surface-assisted laser desorption/ionization mass spectrometry: desorption mechanism(s) and the design of SALDI substrates. , 2009, Analytical chemistry.

[64]  F. Rowell,et al.  Detection of drugs and their metabolites in dusted latent fingermarks by mass spectrometry. , 2009, The Analyst.

[65]  J. Kong,et al.  TiO(2)-modified macroporous silica foams for advanced enrichment of multi-phosphorylated peptides. , 2009, Chemistry.

[66]  S. Retterer,et al.  Impacts of Surface Morphology on Ion Desorption and Ionization in Desorption Ionization on Porous Silicon (DIOS) Mass Spectrometry , 2009 .

[67]  Michael J. Sailor,et al.  Real-time monitoring of enzyme activity in a mesoporous silicon double layer , 2009, Nature nanotechnology.

[68]  T. Korenaga,et al.  Visible and Near-infrared Laser Desorption Ionization Mass Spectrometry Using Single Wall Carbon Nanotubes , 2009 .

[69]  K. Sakaguchi,et al.  Encapsulation of cellulase with mesoporous silica (SBA-15) , 2008 .

[70]  C. Huck,et al.  Analysis of protein phosphorylation by monolithic extraction columns based on poly(divinylbenzene) containing embedded titanium dioxide and zirconium dioxide nano‐powders , 2008, Proteomics.

[71]  Huan‐Tsung Chang,et al.  Determining estrogens using surface-assisted laser desorption/ionization mass spectrometry with silver nanoparticles as the matrix , 2008, Journal of the American Society for Mass Spectrometry.

[72]  A. Leitner,et al.  Tin Dioxide Microspheres as a Promising Material for Phosphopeptide Enrichment Prior to Liquid Chromatography‐(Tandem) Mass Spectrometry Analysis , 2008 .

[73]  Shu-hua Chen,et al.  Multiplexed immunoassay: quantitation and profiling of serum biomarkers using magnetic nanoprobes and MALDI-TOF MS. , 2008, Analytical chemistry.

[74]  Yu-Chie Chen,et al.  Surface-assisted laser desorption/ionization mass spectrometry on titania nanotube arrays , 2008, Journal of the American Society for Mass Spectrometry.

[75]  Haojie Lu,et al.  Surfactant-free synthesis of SnO2@PMMA and TiO2@PMMA core-shell nanobeads designed for peptide/protein enrichment and MALDI-TOF MS analysis. , 2008, Angewandte Chemie.

[76]  Juan Pablo Albar,et al.  Advances in the analysis of protein phosphorylation. , 2008, Journal of proteome research.

[77]  H. Girault,et al.  Specific on-plate enrichment of phosphorylated peptides for direct MALDI-TOF MS analysis. , 2007, Journal of proteome research.

[78]  Junefredo V. Apon,et al.  Clathrate nanostructures for mass spectrometry , 2007, Nature.

[79]  M. Politi,et al.  Peroxidase catalytic cycle of MCM-41-entrapped microperoxidase-11 as a mechanism for phenol oxidation. , 2007, Journal of nanoscience and nanotechnology.

[80]  D. Russell,et al.  Tailoring nanoparticle surface chemistry to enhance laser desorption ionization of peptides and proteins. , 2007, Nano letters.

[81]  L. Malorni,et al.  Identification of phosphoproteins and determination of phosphorylation sites by zirconium dioxide enrichment and SELDI-MS/MS. , 2007, Journal of mass spectrometry : JMS.

[82]  Xiaogang Jiang,et al.  Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis , 2007, Electrophoresis.

[83]  S. Gellman,et al.  H/D exchange- and mass spectrometry-based strategy for the thermodynamic analysis of protein-ligand binding. , 2007, Analytical chemistry.

[84]  E. Magner,et al.  Chloroperoxidase on Periodic Mesoporous Organosilanes: Immobilization and Reuse , 2007 .

[85]  Ruedi Aebersold,et al.  Reproducible isolation of distinct, overlapping segments of the phosphoproteome , 2007, Nature Methods.

[86]  Yu-Chie Chen,et al.  Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. , 2007, Journal of proteome research.

[87]  Xiaogang Jiang,et al.  Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis. , 2007, Angewandte Chemie.

[88]  Rajesh Bera,et al.  Anchoring of copper complex in MCM-41 matrix: a highly efficient catalyst for epoxidation of olefins by tert-BuOOH. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[89]  Huan-Cheng Chang,et al.  Matrix-assisted laser desorption/ionization (MALDI) mechanism revisited. , 2007, Analytica chimica acta.

[90]  V. Wysocki,et al.  Small-molecule analysis with silicon-nanoparticle-assisted laser desorption/ionization mass spectrometry. , 2007, Analytical chemistry.

[91]  E. Petricoin,et al.  The blood peptidome: a higher dimension of information content for cancer biomarker discovery , 2006, Nature Reviews Cancer.

[92]  Jun Liu,et al.  Characterization of functionalized nanoporous supports for protein confinement , 2006, Nanotechnology.

[93]  M. Larsen,et al.  Highly selective enrichment of phosphorylated peptides using titanium dioxide , 2006, Nature Protocols.

[94]  Michael J. Sailor,et al.  Protein‐Coated Porous‐Silicon Photonic Crystals for Amplified Optical Detection of Protease Activity , 2006 .

[95]  Shang-Yu Huang,et al.  Nano-titanium dioxide composites for the enrichment of phosphopeptides. , 2006, Journal of chromatography. A.

[96]  C. Mou,et al.  Effect of spin configuration on the reactivity of cytochrome c immobilized in mesoporous silica , 2006 .

[97]  R. Aebersold,et al.  Mass Spectrometry and Protein Analysis , 2006, Science.

[98]  Hye Kyong Kweon,et al.  Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. , 2006, Analytical chemistry.

[99]  S. Iyer,et al.  Surface-assisted laser desorption/ionization mass spectrometry , 2006, Expert review of proteomics.

[100]  Yu‐Fen Huang,et al.  Nile Red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. , 2006, Analytical chemistry.

[101]  W. Weckwerth,et al.  Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC) , 2005, Proteomics.

[102]  Yu-Chie Chen,et al.  Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. , 2005, Analytical chemistry.

[103]  Y. Ishihama,et al.  Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. , 2005, Analytical chemistry.

[104]  Yu Zhang,et al.  Using oxidized carbon nanotubes as matrix for analysis of small molecules by MALDI-TOF MS , 2005, Journal of the American Society for Mass Spectrometry.

[105]  Junefredo V. Apon,et al.  Desorption/ionization on silicon nanowires. , 2005, Analytical chemistry.

[106]  H. Zou,et al.  Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ionization mass spectrometry , 2005, Journal of the American Society for Mass Spectrometry.

[107]  Pengyuan Yang,et al.  Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis. , 2005, Angewandte Chemie.

[108]  C. Mou,et al.  Preparation and characterization of MCM-41-supported hydroxo-bridged dicupric-phenanthroline complex , 2004 .

[109]  Yu-Chie Chen,et al.  Carbon nanotubes as affinity probes for peptides and proteins in MALDI MS analysis , 2004, Journal of the American Society for Mass Spectrometry.

[110]  G. Siuzdak,et al.  Affinity mass spectrometry from a tailored porous silicon surface. , 2004, Chemical communications.

[111]  David C Muddiman,et al.  Analysis of the low molecular weight fraction of serum by LC-dual ESI-FT-ICR mass spectrometry: precision of retention time, mass, and ion abundance. , 2004, Analytical chemistry.

[112]  M. Hartmann,et al.  Adsorption of Cytochrome c on Mesoporous Molecular Sieves: Influence of pH, Pore Diameter, and Aluminum Incorporation , 2004 .

[113]  G. Siuzdak,et al.  Cleavable linkers for porous silicon-based mass spectrometry. , 2004, Angewandte Chemie.

[114]  Hanfa Zou,et al.  Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. , 2003, Analytical chemistry.

[115]  T. Veenstra,et al.  Characterization of the Low Molecular Weight Human Serum Proteome*S , 2003, Molecular & Cellular Proteomics.

[116]  A. Stein Advances in Microporous and Mesoporous Solids—Highlights of Recent Progress , 2003 .

[117]  E. Petricoin,et al.  Early detection: Proteomic applications for the early detection of cancer , 2003, Nature Reviews Cancer.

[118]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[119]  R Zenobi,et al.  MALDI ionization: the role of in-plume processes. , 2003, Chemical reviews.

[120]  Liang Li,et al.  Microcolumn capture and digestion of proteins combined with mass spectrometry for protein identification. , 2002, Journal of proteome research.

[121]  Yu-Chie Chen,et al.  Analysis of small organics on planar silica surfaces using surface‐assisted laser desorption/ionization mass spectrometry , 2001 .

[122]  B. Chait,et al.  Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome , 2001, Nature Biotechnology.

[123]  P. Verhaert,et al.  Matrix‐assisted laser desorption/ionization quadrupole Time‐of‐Flight Mass Spectrometry: An elegant tool for peptidomics , 2001, Proteomics.

[124]  T. Kajino,et al.  Catalytic Activity in Organic Solvents and Stability of Immobilized Enzymes Depend on the Pore Size and Surface Characteristics of Mesoporous Silica , 2000 .

[125]  A. Doucette,et al.  Protein concentration and enzyme digestion on microbeads for MALDI-TOF peptides mass mapping of proteins from dilute solutions. , 2000, Analytical chemistry.

[126]  M. Mann,et al.  Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[127]  G. Siuzdak,et al.  Desorption–ionization mass spectrometry on porous silicon , 1999, Nature.

[128]  A. G. Cullis,et al.  The structural and luminescence properties of porous silicon , 1997 .

[129]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[130]  J. Sunner,et al.  Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. , 1995, Analytical chemistry.

[131]  R. Nelson,et al.  Mass determination of human immunoglobulin IgM using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 1994, Rapid communications in mass spectrometry : RCM.

[132]  Hiroshi Nakamura,et al.  New Ceramic Titania: Selective Adsorbent for Organic Phosphates , 1990 .

[133]  C. G. Edmonds,et al.  New developments in biochemical mass spectrometry: electrospray ionization. , 1990, Analytical chemistry.

[134]  M. Kawahara,et al.  Group Separation of Ribonucleosides and Deoxyribonucleosides on a New Ceramic Titania Column , 1989 .

[135]  M. Mann,et al.  Electrospray ionization for mass spectrometry of large biomolecules. , 1989, Science.

[136]  Koichi Tanaka,et al.  Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry , 1988 .

[137]  M. Karas,et al.  Matrix-assisted ultraviolet laser desorption of non-volatile compounds , 1987 .

[138]  Jingjing Wan,et al.  Periodic mesoporous organosilicas with controlled pore symmetries for peptides enrichment. , 2011, Journal of nanoscience and nanotechnology.

[139]  Chi-Ming Che,et al.  Molecular imaging of banknote and questioned document using solvent-free gold nanoparticle-assisted laser desorption/ionization imaging mass spectrometry. , 2011, Analytical chemistry.

[140]  Liang Qiao,et al.  A nanoporous reactor for efficient proteolysis. , 2008, Chemistry.

[141]  D. Peterson,et al.  Matrix-free methods for laser desorption/ionization mass spectrometry. , 2007, Mass spectrometry reviews.

[142]  H-C Chang,et al.  High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. , 2005, Analytical chemistry.

[143]  M. Nielen MALDI TIME-OF-FLIGHT MASS SPECTROMETRY OF SYNTHETIC POLYMERS , 1999 .