Effect of cooling surface temperature difference on the performance of high-temperature PEMFCs

[1]  Purushothama Chippar,et al.  Combined effect of channel to rib width ratio and gas diffusion layer deformation on high temperature – Polymer electrolyte membrane fuel cell performance , 2022, International Journal of Hydrogen Energy.

[2]  A. N. Desai,et al.  Simulating the effects of flow configurations on auxiliary power requirement and net power output of High-Temperature Proton Exchange Membrane Fuel Cell , 2022, Energy Conversion and Management.

[3]  Xu Chen,et al.  Temperature-dependent fatigue crack growth mechanisms of fuel cell membranes , 2022, International Journal of Fatigue.

[4]  Jihong Zhang,et al.  Effect of the cooling water flow direction on the performance of PEMFCs , 2022, International Journal of Heat and Mass Transfer.

[5]  M. Ni,et al.  Multi-perspective analysis of CO poisoning in high-temperature proton exchange membrane fuel cell stack via numerical investigation , 2021 .

[6]  C. Yin,et al.  Design and numerical analysis of air-cooled proton exchange membrane fuel cell stack for performance optimization , 2021 .

[7]  Minjin Kim,et al.  Development of preheating methodology for a 5 kW HT-PEMFC system , 2021, International Journal of Hydrogen Energy.

[8]  Purushothama Chippar,et al.  A Numerical Investigation on Thermal Gradients and Stresses in High Temperature PEM Fuel Cell During Start-up , 2021 .

[9]  M. Ni,et al.  Optimization of catalyst layer thickness for achieving high performance and low cost of high temperature proton exchange membrane fuel cell , 2021, Applied Energy.

[10]  S. Das,et al.  Three dimensional multi-physics modeling and simulation for assessment of mass transport impact on the performance of a high temperature polymer electrolyte membrane fuel cell , 2021, Journal of Power Sources.

[11]  M. Ni,et al.  Numerical study of high temperature proton exchange membrane fuel cell (HT-PEMFC) with a focus on rib design , 2021 .

[12]  Y. Liu,et al.  Effect of phosphoric acid-doped polybenzimidazole membranes on the performance of H+-ion concentration cell , 2021, International Journal of Hydrogen Energy.

[13]  Hong Sun,et al.  Combination effects of flow field structure and assembly force on performance of high temperature proton exchange membrane fuel cells , 2021, International Journal of Energy Research.

[14]  M. Ni,et al.  3D non-isothermal dynamic simulation of high temperature proton exchange membrane fuel cell in the start-up process , 2020 .

[15]  B. Krishnamurthy,et al.  A 3 dimensional numerical model to study the effect of GDL porosity on high temperature PEM fuel cells , 2020 .

[16]  Wei He,et al.  Performance enhancement of polymer electrolyte membrane fuel cells with a hybrid wettability gas diffusion layer , 2020 .

[17]  V. Compañ,et al.  A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes , 2020, Polymers.

[18]  B. Sundén,et al.  Computational analysis of the impact of a micro porous layer (MPL) on the characteristics of a high temperature PEMFC , 2020 .

[19]  S. Tu,et al.  Effect of frame material on the creep of solid oxide fuel cell , 2019, International Journal of Hydrogen Energy.

[20]  Junliang Zhang,et al.  Pt-Oxide Coverage-Dependent Oxygen Reduction Reaction (ORR) Kinetics , 2011, ECS Transactions.

[21]  M. A. Zulkifley,et al.  A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system , 2017 .

[22]  Quan Liao,et al.  A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs) , 2017 .

[23]  Samuel Simon Araya,et al.  A comprehensive review of PBI-based high temperature PEM fuel cells , 2016 .

[24]  Siew Hwa Chan,et al.  Transient carbon monoxide poisoning kinetics during warm-up period of a high-temperature PEMFC – Physical model and parametric study , 2015 .

[25]  Dayadeep S. Monder,et al.  Thermal management of high temperature polymer electrolyte membrane fuel cell stacks in the power range of 1–10 kWe , 2014 .

[26]  K. Jiao,et al.  Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes , 2014 .

[27]  H. Ju,et al.  Numerical study of thermal stresses in high-temperature proton exchange membrane fuel cell (HT-PEMFC) , 2014 .

[28]  A. Su,et al.  Parametric investigation to enhance the performance of a PBI-based high-temperature PEMFC , 2014 .

[29]  Werner Lehnert,et al.  Design and Experimental Investigation of a Heat Pipe Supported External Cooling System for HT-PEFC Stacks , 2013 .

[30]  Sreenivas Jayanti,et al.  Parametric study of an external coolant system for a high temperature polymer electrolyte membrane fuel cell , 2013 .

[31]  H. Ju,et al.  Numerical modeling and investigation of gas crossover effects in high temperature proton exchange membrane (PEM) fuel cells , 2013 .

[32]  Dong Min Kim,et al.  Coupled mechanical stress and multi-dimensional CFD analysis for high temperature proton exchange membrane fuel cells (HT-PEMFCs) , 2013 .

[33]  C. Roth,et al.  Analyzing the Influence of H3PO4 as Catalyst Poison in High Temperature PEM Fuel Cells Using in-operando X-ray Absorption Spectroscopy , 2013 .

[34]  Werner Lehnert,et al.  Temperature distribution in a liquid-cooled HT-PEFC stack , 2013 .

[35]  H. Na,et al.  End-group cross-linked polybenzimidazole blend membranes for high temperature proton exchange membrane , 2012 .

[36]  H. Ju,et al.  Three-dimensional non-isothermal modeling of a phosphoric acid-doped polybenzimidazole (PBI) membrane fuel cell , 2012 .

[37]  Werner Lehnert,et al.  3D modeling of an HT-PEFC stack using reformate gas , 2012 .

[38]  J. Yi,et al.  Pumpless thermal management of water-cooled high-temperature proton exchange membrane fuel cells , 2011 .

[39]  Xianguo Li,et al.  Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes , 2011 .

[40]  Xianguo Li,et al.  On the modeling of water transport in polymer electrolyte membrane fuel cells , 2009 .

[41]  E. U. Ubong,et al.  Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell , 2009 .

[42]  Joachim Scholta,et al.  Externally cooled high temperature polymer electrolyte membrane fuel cell stack , 2009 .

[43]  David A. Dillard,et al.  Viscoelastic Stress Analysis of Constrained Proton Exchange Membranes Under Humidity Cycling , 2009 .

[44]  S. Hsu,et al.  Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications , 2007 .

[45]  Michael H. Santare,et al.  Stresses in Proton Exchange Membranes Due to Hygro-Thermal Loading , 2006 .

[46]  Felix Bauer,et al.  Influence of Temperature and Humidity on the Mechanical Properties of Nafion® 117 Polymer Electrolyte Membrane , 2005 .

[47]  Qingfeng Li,et al.  Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells , 2004 .

[48]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .

[49]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[50]  Jesse S. Wainright,et al.  Acid-doped polybenzimidazoles : a new polymer electrolyte , 1995 .