Magnetocaloric effects from an interplay of magnetic sublattices in Nd2NiMnO6

We present a combined experimental and theoretical study to understand the magnetism and magnetocaloric behavior of the double perovskite Nd2NiMnO6. The magnetic susceptibility data confirms a ferromagnetic transition with K. An additional feature at T  =  25 K, indicative of antiferromagnetic correlations, is present. A positive magnetocaloric effect (MCE) near and a negative MCE around T  =  25 K is inferred from the temperature dependence of the change in magnetic entropy at low magnetic fields. The negative MCE peak is suppressed on the application of a magnetic field and can be made to switch to a conventional positive MCE upon increasing magnetic field. We understand and reproduce these features in Monte Carlo simulations of a phenomenological Heisenberg model for Nd2NiMnO6. The validity of the model is tested using density functional theory calculations. We argue that this simple understanding of the experimental observations in terms of two antiferromagnetically coupled sublattices allows these results to be useful across a broader class of magnetocaloric materials.

[1]  Ashutosh Kumar Singh,et al.  Electronic structure of Pr2MnNiO6 from x-ray photoemission, absorption and density functional theory , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  M. Varela,et al.  Dielectric characterization of multiferroic magnetoelectric double-perovskite Y(Ni0.5Mn0.5)O3 thin films , 2016 .

[3]  Ashutosh Kumar Singh,et al.  Influence of antisite disorders on the magnetic properties of double perovskite Nd2NiMnO6 , 2016 .

[4]  E. Brück,et al.  A universal metric for ferroic energy materials , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  J. Junquera,et al.  Efficient thermoelectric materials using nonmagnetic double perovskites with d 0 /d 6 band filling , 2016, 1602.01539.

[6]  A. A. Coelho,et al.  Magnetic and magnetocaloric properties of La$_{0.6}$Ca$_{0.4}$MnO$_{3}$ tunable by particle size and dimensionality , 2015, 1508.03384.

[7]  Arijit Ghosh,et al.  Occurrence of magnetoelectric effect correlated to the Dy order in Dy2NiMnO6 double perovskite , 2015 .

[8]  A. Venimadhav,et al.  Giant magnetocaloric effect in Gd2NiMnO6 and Gd2CoMnO6 ferromagnetic insulators , 2015, 1508.00087.

[9]  M. Karppinen,et al.  A2B′B″O6 perovskites: A review , 2015 .

[10]  S. Elizabeth,et al.  Magnetic frustration and dielectric relaxation in insulating Nd2NiMnO6 double perovskites , 2015 .

[11]  S. Patnaik,et al.  Magnetic entropy change and critical exponents in double perovskite Y2NiMnO6 , 2014, 1403.0453.

[12]  T. Saha‐Dasgupta Magnetism in Double Perovskites , 2013 .

[13]  S. Patnaik,et al.  Magnetism driven ferroelectricity above liquid nitrogen temperature in Y2CoMnO6 , 2013, 1303.6921.

[14]  Y. Sun,et al.  Magnetic properties and magnetocaloric effect of La0.8Ca0.2MnO3 nanoparticles tuned by particle size , 2012 .

[15]  J. Alonso,et al.  Magnetic and structural features of the NdNi1 − xMnxO3 perovskite series investigated by neutron diffraction , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  P. Majumdar,et al.  Antisite domains in double perovskite ferromagnets: Impact on magnetotransport and half-metallicity , 2010, 1009.1702.

[17]  P. Fournier,et al.  Multiferroic double perovskites: Opportunities, issues, and challenges , 2009, 0912.3292.

[18]  J. Brink,et al.  Theoretical prediction of multiferroicity in double perovskite Y2NiMnO6 , 2009, 0909.1439.

[19]  S. Lofland,et al.  An investigation of structural, magnetic and dielectric properties of R2NiMnO6 (R = rare earth, Y) , 2009 .

[20]  W. Fang,et al.  Magnetocaloric effect in Gd6Co1.67Si3 compound with a second-order phase transition , 2008 .

[21]  J. Li,et al.  Magnetocapacitance and Magnetoresistance Near Room Temperature in a Ferromagnetic Semiconductor: La2NiMnO6 , 2005 .

[22]  X. Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[23]  Robert D. Shull,et al.  Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron , 2004, Nature.

[24]  F. D. Boer,et al.  Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.

[25]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[26]  K.-I. Kobayashi,et al.  Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure , 1998, Nature.

[27]  R. A. Young,et al.  DBWS-9411 – an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers , 1995 .

[28]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.

[29]  M. E. Wood,et al.  General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity , 1985 .

[30]  S. Rashidi,et al.  Magnetocaloric Materials , 2021, Reference Module in Materials Science and Materials Engineering.

[31]  T. Zhou,et al.  Spin and orbital magnetic moments and spin anisotropy energies of light rare earth atoms embedded in graphene: A first-principles study , 2016 .