Homotopical characterization of non-Hermitian band structures

We proposed a framework towards the topological characterization of non-Hermitian band structures. Different from previous $K$-theoretical approaches, our approach is homotopical, which enables us to see more topological invariants. Specifically, we considered the classification of non-Hermitian systems with separable band structures. We found that the whole classification set is decomposed into several sectors, based on the braiding of energy levels. Each sector can be further classified based on the topology of eigenstates (wave functions). Due to the interplay between energy level braiding and eigenstates topology, we found some torsion invariants, which only appear in the non-Hermitian world. We further proved that these new topological invariants are unstable, in the sense that adding more bands will trivialize these invariants.

[1]  Liang Fu,et al.  Topological Band Theory for Non-Hermitian Hamiltonians. , 2017, Physical review letters.

[2]  J. E. Barrios Vargas,et al.  Topological states of non-Hermitian systems , 2018, The European Physical Journal Special Topics.

[3]  R. Roy Z 2 classification of quantum spin Hall systems: An approach using time-reversal invariance , 2009 .

[4]  M. Gilbert,et al.  Loss of Hall conductivity quantization in a non-Hermitian quantum anomalous Hall insulator , 2018, Physical Review B.

[5]  Shiyue Hua,et al.  Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators , 2014, Nature Photonics.

[6]  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[7]  N. Kawakami,et al.  Non-Hermitian perspective of the band structure in heavy-fermion systems , 2018, Physical Review B.

[8]  Luis E. F. Foa Torres,et al.  Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points , 2017, 1711.05235.

[9]  Hui Cao,et al.  Unidirectional invisibility induced by PT-symmetric periodic structures. , 2011, Physical review letters.

[10]  S. Lieu Topological phases in the non-Hermitian Su-Schrieffer-Heeger model , 2017, 1709.03788.

[11]  K. Kawabata,et al.  Classification of Exceptional Points and Non-Hermitian Topological Semimetals. , 2019, Physical review letters.

[12]  J. González-Meneses Basic results on braid groups , 2010, 1010.0321.

[13]  W. Thurston On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .

[14]  S. Longhi,et al.  Bloch oscillations in complex crystals with PT symmetry. , 2009, Physical review letters.

[15]  P. Zoller,et al.  Topology by dissipation in atomic quantum wires , 2011, 1105.5947.

[16]  Demetrios N. Christodoulides,et al.  Enhanced sensitivity at higher-order exceptional points , 2017, Nature.

[17]  Vilson R. Almeida,et al.  Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. , 2013, Nature materials.

[18]  R. Lü,et al.  Topological invariants, zero mode edge states and finite size effect for a generalized non-reciprocal Su-Schrieffer-Heeger model , 2019, 1906.04700.

[19]  D. Christodoulides,et al.  Parity-time–symmetric microring lasers , 2014, Science.

[20]  Hui Cao,et al.  Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics , 2015 .

[21]  Masahito Ueda,et al.  Anomalous helical edge states in a non-Hermitian Chern insulator , 2018, Physical Review B.

[22]  N. Moiseyev,et al.  Non-Hermitian Quantum Mechanics: Frontmatter , 2011 .

[23]  K. Roychowdhury,et al.  Classification of magnetic frustration and metamaterials from topology , 2018, Physical Review B.

[24]  Carmichael,et al.  Quantum trajectory theory for cascaded open systems. , 1993, Physical review letters.

[25]  R. Lu,et al.  Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems , 2018, 1802.04169.

[26]  Tanmoy Das,et al.  New topological invariants in non-Hermitian systems , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  F. A. Garside,et al.  THE BRAID GROUP AND OTHER GROUPS , 1969 .

[28]  Shinsei Ryu,et al.  Topological insulators and superconductors: tenfold way and dimensional hierarchy , 2009, 0912.2157.

[29]  Hengyun Zhou,et al.  Periodic table for topological bands with non-Hermitian symmetries , 2018, Physical Review B.

[30]  W. Heiss,et al.  The physics of exceptional points , 2012, 1210.7536.

[31]  Henning Schomerus,et al.  Topologically Protected Defect States in Open Photonic Systems with Non-Hermitian Charge-Conjugation and Parity-Time Symmetry. , 2015, Physical review letters.

[32]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[33]  Dan S. Borgnia,et al.  Non-Hermitian Boundary Modes and Topology. , 2019, Physical review letters.

[34]  H. Harney,et al.  PT symmetry and spontaneous symmetry breaking in a microwave billiard. , 2011, Physical review letters.

[35]  Sungsam Kang,et al.  Quasieigenstate coalescence in an atom-cavity quantum composite. , 2010, Physical review letters.

[36]  Franco Nori,et al.  Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems. , 2016, Physical review letters.

[37]  Ingrid Rotter,et al.  A non-Hermitian Hamilton operator and the physics of open quantum systems , 2009 .

[38]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[39]  Masahito Ueda,et al.  Symmetry and Topology in Non-Hermitian Physics , 2018, Physical Review X.

[40]  Demetrios N. Christodoulides,et al.  Non-Hermitian physics and PT symmetry , 2018, Nature Physics.

[41]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[42]  F. Song,et al.  Non-Hermitian Chern Bands. , 2018, Physical review letters.

[43]  R. Lu,et al.  PT symmetry in the non-Hermitian Su-Schrieffer-Heeger model with complex boundary potentials , 2014, 1405.5591.

[44]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[45]  Li Ge,et al.  Pump-induced exceptional points in lasers. , 2011, Physical review letters.

[46]  B. Simon,et al.  Homotopy and Quantization in Condensed Matter Physics , 1983 .

[47]  Y. Xiong Why does bulk boundary correspondence fail in some non-hermitian topological models , 2017, 1705.06039.

[48]  Masahito Ueda,et al.  Topological unification of time-reversal and particle-hole symmetries in non-Hermitian physics , 2018, Nature Communications.

[49]  C. Schneider,et al.  Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard , 2015, Nature.

[50]  Ching Hua Lee,et al.  Anatomy of skin modes and topology in non-Hermitian systems , 2018, Physical Review B.

[51]  Li Ge,et al.  Non-Hermitian photonics based on parity–time symmetry , 2017 .

[52]  M. Kohmoto,et al.  Edge states and topological phases in non-Hermitian systems , 2011, 1107.2079.

[53]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[54]  U. Peschel,et al.  Parity–time synthetic photonic lattices , 2012, Nature.

[55]  M. Berry Physics of Nonhermitian Degeneracies , 2004 .

[56]  Tony E. Lee,et al.  Anomalous Edge State in a Non-Hermitian Lattice. , 2016, Physical review letters.

[57]  Zhong Wang,et al.  Edge States and Topological Invariants of Non-Hermitian Systems. , 2018, Physical review letters.

[58]  H. Zhai,et al.  Hall conductance of a non-Hermitian Chern insulator , 2018, Physical Review B.

[59]  Ying Ran,et al.  Topological surface States in three-dimensional magnetic insulators. , 2008, Physical review letters.

[60]  H. Harney,et al.  Experimental observation of the topological structure of exceptional points. , 2001, Physical review letters.

[61]  L. Balents,et al.  Topological invariants of time-reversal-invariant band structures , 2007 .

[62]  Shachar Klaiman,et al.  Visualization of branch points in PT-symmetric waveguides. , 2008, Physical review letters.

[63]  Shinsei Ryu,et al.  Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.

[64]  Shu Chen,et al.  Topological classification of non-Hermitian systems with reflection symmetry , 2018, Physical Review B.

[65]  A. Zyuzin,et al.  Flat band in disorder-driven non-Hermitian Weyl semimetals , 2017, 1710.05344.

[66]  Y. Ashida,et al.  Topological Phases of Non-Hermitian Systems , 2018, Physical Review X.

[67]  Yi Zhang,et al.  Quantized response and topology of magnetic insulators with inversion symmetry , 2010, 1010.4335.

[68]  Dorje C Brody,et al.  Complex extension of quantum mechanics. , 2002, Physical review letters.

[69]  E. Fradkin,et al.  Field Theories of Condensed Matter Physics , 2013 .

[70]  Jan Carl Budich,et al.  Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems. , 2018, Physical review letters.

[71]  Ling Lu,et al.  Spawning rings of exceptional points out of Dirac cones , 2015, Nature.

[72]  M. Keldysh,et al.  ON THE COMPLETENESS OF THE EIGENFUNCTIONS OF SOME CLASSES OF NON-SELFADJOINT LINEAR OPERATORS , 1971 .

[73]  S. Fan,et al.  Topological Classification of Non-Hermitian Hamiltonians , 2019, 1911.12748.